@inproceedings{kundu-etal-2018-neural,
title = "Neural Cross-Lingual Coreference Resolution And Its Application To Entity Linking",
author = "Kundu, Gourab and
Sil, Avi and
Florian, Radu and
Hamza, Wael",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2063/",
doi = "10.18653/v1/P18-2063",
pages = "395--400",
abstract = "We propose an entity-centric neural crosslingual coreference model that builds on multi-lingual embeddings and language independent features. We perform both intrinsic and extrinsic evaluations of our model. In the intrinsic evaluation, we show that our model, when trained on English and tested on Chinese and Spanish, achieves competitive results to the models trained directly on Chinese and Spanish respectively. In the extrinsic evaluation, we show that our English model helps achieve superior entity linking accuracy on Chinese and Spanish test sets than the top 2015 TAC system without using any annotated data from Chinese or Spanish."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kundu-etal-2018-neural">
<titleInfo>
<title>Neural Cross-Lingual Coreference Resolution And Its Application To Entity Linking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gourab</namePart>
<namePart type="family">Kundu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Sil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Florian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wael</namePart>
<namePart type="family">Hamza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an entity-centric neural crosslingual coreference model that builds on multi-lingual embeddings and language independent features. We perform both intrinsic and extrinsic evaluations of our model. In the intrinsic evaluation, we show that our model, when trained on English and tested on Chinese and Spanish, achieves competitive results to the models trained directly on Chinese and Spanish respectively. In the extrinsic evaluation, we show that our English model helps achieve superior entity linking accuracy on Chinese and Spanish test sets than the top 2015 TAC system without using any annotated data from Chinese or Spanish.</abstract>
<identifier type="citekey">kundu-etal-2018-neural</identifier>
<identifier type="doi">10.18653/v1/P18-2063</identifier>
<location>
<url>https://aclanthology.org/P18-2063/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>395</start>
<end>400</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Cross-Lingual Coreference Resolution And Its Application To Entity Linking
%A Kundu, Gourab
%A Sil, Avi
%A Florian, Radu
%A Hamza, Wael
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F kundu-etal-2018-neural
%X We propose an entity-centric neural crosslingual coreference model that builds on multi-lingual embeddings and language independent features. We perform both intrinsic and extrinsic evaluations of our model. In the intrinsic evaluation, we show that our model, when trained on English and tested on Chinese and Spanish, achieves competitive results to the models trained directly on Chinese and Spanish respectively. In the extrinsic evaluation, we show that our English model helps achieve superior entity linking accuracy on Chinese and Spanish test sets than the top 2015 TAC system without using any annotated data from Chinese or Spanish.
%R 10.18653/v1/P18-2063
%U https://aclanthology.org/P18-2063/
%U https://doi.org/10.18653/v1/P18-2063
%P 395-400
Markdown (Informal)
[Neural Cross-Lingual Coreference Resolution And Its Application To Entity Linking](https://aclanthology.org/P18-2063/) (Kundu et al., ACL 2018)
ACL