@inproceedings{zhao-etal-2018-document,
title = "Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention",
author = "Zhao, Yue and
Jin, Xiaolong and
Wang, Yuanzhuo and
Cheng, Xueqi",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2066",
doi = "10.18653/v1/P18-2066",
pages = "414--419",
abstract = "Document-level information is very important for event detection even at sentence level. In this paper, we propose a novel Document Embedding Enhanced Bi-RNN model, called DEEB-RNN, to detect events in sentences. This model first learns event detection oriented embeddings of documents through a hierarchical and supervised attention based RNN, which pays word-level attention to event triggers and sentence-level attention to those sentences containing events. It then uses the learned document embedding to enhance another bidirectional RNN model to identify event triggers and their types in sentences. Through experiments on the ACE-2005 dataset, we demonstrate the effectiveness and merits of the proposed DEEB-RNN model via comparison with state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-document">
<titleInfo>
<title>Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolong</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanzhuo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Document-level information is very important for event detection even at sentence level. In this paper, we propose a novel Document Embedding Enhanced Bi-RNN model, called DEEB-RNN, to detect events in sentences. This model first learns event detection oriented embeddings of documents through a hierarchical and supervised attention based RNN, which pays word-level attention to event triggers and sentence-level attention to those sentences containing events. It then uses the learned document embedding to enhance another bidirectional RNN model to identify event triggers and their types in sentences. Through experiments on the ACE-2005 dataset, we demonstrate the effectiveness and merits of the proposed DEEB-RNN model via comparison with state-of-the-art methods.</abstract>
<identifier type="citekey">zhao-etal-2018-document</identifier>
<identifier type="doi">10.18653/v1/P18-2066</identifier>
<location>
<url>https://aclanthology.org/P18-2066</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>414</start>
<end>419</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention
%A Zhao, Yue
%A Jin, Xiaolong
%A Wang, Yuanzhuo
%A Cheng, Xueqi
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhao-etal-2018-document
%X Document-level information is very important for event detection even at sentence level. In this paper, we propose a novel Document Embedding Enhanced Bi-RNN model, called DEEB-RNN, to detect events in sentences. This model first learns event detection oriented embeddings of documents through a hierarchical and supervised attention based RNN, which pays word-level attention to event triggers and sentence-level attention to those sentences containing events. It then uses the learned document embedding to enhance another bidirectional RNN model to identify event triggers and their types in sentences. Through experiments on the ACE-2005 dataset, we demonstrate the effectiveness and merits of the proposed DEEB-RNN model via comparison with state-of-the-art methods.
%R 10.18653/v1/P18-2066
%U https://aclanthology.org/P18-2066
%U https://doi.org/10.18653/v1/P18-2066
%P 414-419
Markdown (Informal)
[Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention](https://aclanthology.org/P18-2066) (Zhao et al., ACL 2018)
ACL