@inproceedings{zhu-etal-2018-exploring,
title = "Exploring Semantic Properties of Sentence Embeddings",
author = "Zhu, Xunjie and
Li, Tingfeng and
de Melo, Gerard",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2100",
doi = "10.18653/v1/P18-2100",
pages = "632--637",
abstract = "Neural vector representations are ubiquitous throughout all subfields of NLP. While word vectors have been studied in much detail, thus far only little light has been shed on the properties of sentence embeddings. In this paper, we assess to what extent prominent sentence embedding methods exhibit select semantic properties. We propose a framework that generate triplets of sentences to explore how changes in the syntactic structure or semantics of a given sentence affect the similarities obtained between their sentence embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2018-exploring">
<titleInfo>
<title>Exploring Semantic Properties of Sentence Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xunjie</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingfeng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerard</namePart>
<namePart type="family">de Melo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural vector representations are ubiquitous throughout all subfields of NLP. While word vectors have been studied in much detail, thus far only little light has been shed on the properties of sentence embeddings. In this paper, we assess to what extent prominent sentence embedding methods exhibit select semantic properties. We propose a framework that generate triplets of sentences to explore how changes in the syntactic structure or semantics of a given sentence affect the similarities obtained between their sentence embeddings.</abstract>
<identifier type="citekey">zhu-etal-2018-exploring</identifier>
<identifier type="doi">10.18653/v1/P18-2100</identifier>
<location>
<url>https://aclanthology.org/P18-2100</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>632</start>
<end>637</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Semantic Properties of Sentence Embeddings
%A Zhu, Xunjie
%A Li, Tingfeng
%A de Melo, Gerard
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhu-etal-2018-exploring
%X Neural vector representations are ubiquitous throughout all subfields of NLP. While word vectors have been studied in much detail, thus far only little light has been shed on the properties of sentence embeddings. In this paper, we assess to what extent prominent sentence embedding methods exhibit select semantic properties. We propose a framework that generate triplets of sentences to explore how changes in the syntactic structure or semantics of a given sentence affect the similarities obtained between their sentence embeddings.
%R 10.18653/v1/P18-2100
%U https://aclanthology.org/P18-2100
%U https://doi.org/10.18653/v1/P18-2100
%P 632-637
Markdown (Informal)
[Exploring Semantic Properties of Sentence Embeddings](https://aclanthology.org/P18-2100) (Zhu et al., ACL 2018)
ACL
- Xunjie Zhu, Tingfeng Li, and Gerard de Melo. 2018. Exploring Semantic Properties of Sentence Embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 632–637, Melbourne, Australia. Association for Computational Linguistics.