@inproceedings{yang-etal-2018-extracting,
    title = "Extracting Commonsense Properties from Embeddings with Limited Human Guidance",
    author = "Yang, Yiben  and
      Birnbaum, Larry  and
      Wang, Ji-Ping  and
      Downey, Doug",
    editor = "Gurevych, Iryna  and
      Miyao, Yusuke",
    booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P18-2102/",
    doi = "10.18653/v1/P18-2102",
    pages = "644--649",
    abstract = "Intelligent systems require common sense, but automatically extracting this knowledge from text can be difficult. We propose and assess methods for extracting one type of commonsense knowledge, object-property comparisons, from pre-trained embeddings. In experiments, we show that our approach exceeds the accuracy of previous work but requires substantially less hand-annotated knowledge. Further, we show that an active learning approach that synthesizes common-sense queries can boost accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2018-extracting">
    <titleInfo>
        <title>Extracting Commonsense Properties from Embeddings with Limited Human Guidance</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yiben</namePart>
        <namePart type="family">Yang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Larry</namePart>
        <namePart type="family">Birnbaum</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ji-Ping</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Doug</namePart>
        <namePart type="family">Downey</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Iryna</namePart>
            <namePart type="family">Gurevych</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yusuke</namePart>
            <namePart type="family">Miyao</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Intelligent systems require common sense, but automatically extracting this knowledge from text can be difficult. We propose and assess methods for extracting one type of commonsense knowledge, object-property comparisons, from pre-trained embeddings. In experiments, we show that our approach exceeds the accuracy of previous work but requires substantially less hand-annotated knowledge. Further, we show that an active learning approach that synthesizes common-sense queries can boost accuracy.</abstract>
    <identifier type="citekey">yang-etal-2018-extracting</identifier>
    <identifier type="doi">10.18653/v1/P18-2102</identifier>
    <location>
        <url>https://aclanthology.org/P18-2102/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>644</start>
            <end>649</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Commonsense Properties from Embeddings with Limited Human Guidance
%A Yang, Yiben
%A Birnbaum, Larry
%A Wang, Ji-Ping
%A Downey, Doug
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F yang-etal-2018-extracting
%X Intelligent systems require common sense, but automatically extracting this knowledge from text can be difficult. We propose and assess methods for extracting one type of commonsense knowledge, object-property comparisons, from pre-trained embeddings. In experiments, we show that our approach exceeds the accuracy of previous work but requires substantially less hand-annotated knowledge. Further, we show that an active learning approach that synthesizes common-sense queries can boost accuracy.
%R 10.18653/v1/P18-2102
%U https://aclanthology.org/P18-2102/
%U https://doi.org/10.18653/v1/P18-2102
%P 644-649
Markdown (Informal)
[Extracting Commonsense Properties from Embeddings with Limited Human Guidance](https://aclanthology.org/P18-2102/) (Yang et al., ACL 2018)
ACL