@inproceedings{zou-lu-2018-learning,
title = "Learning Cross-lingual Distributed Logical Representations for Semantic Parsing",
author = "Zou, Yanyan and
Lu, Wei",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2107/",
doi = "10.18653/v1/P18-2107",
pages = "673--679",
abstract = "With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zou-lu-2018-learning">
<titleInfo>
<title>Learning Cross-lingual Distributed Logical Representations for Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanyan</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.</abstract>
<identifier type="citekey">zou-lu-2018-learning</identifier>
<identifier type="doi">10.18653/v1/P18-2107</identifier>
<location>
<url>https://aclanthology.org/P18-2107/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>673</start>
<end>679</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Cross-lingual Distributed Logical Representations for Semantic Parsing
%A Zou, Yanyan
%A Lu, Wei
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zou-lu-2018-learning
%X With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
%R 10.18653/v1/P18-2107
%U https://aclanthology.org/P18-2107/
%U https://doi.org/10.18653/v1/P18-2107
%P 673-679
Markdown (Informal)
[Learning Cross-lingual Distributed Logical Representations for Semantic Parsing](https://aclanthology.org/P18-2107/) (Zou & Lu, ACL 2018)
ACL