@inproceedings{sankhavara-2018-biomedical,
title = "Biomedical Document Retrieval for Clinical Decision Support System",
author = "Sankhavara, Jainisha",
editor = "Shwartz, Vered and
Tabassum, Jeniya and
Voigt, Rob and
Che, Wanxiang and
de Marneffe, Marie-Catherine and
Nissim, Malvina",
booktitle = "Proceedings of {ACL} 2018, Student Research Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-3012",
doi = "10.18653/v1/P18-3012",
pages = "84--90",
abstract = "The availability of huge amount of biomedical literature have opened up new possibilities to apply Information Retrieval and NLP for mining documents from them. In this work, we are focusing on biomedical document retrieval from literature for clinical decision support systems. We compare statistical and NLP based approaches of query reformulation for biomedical document retrieval. Also, we have modeled the biomedical document retrieval as a learning to rank problem. We report initial results for statistical and NLP based query reformulation approaches and learning to rank approach with future direction of research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sankhavara-2018-biomedical">
<titleInfo>
<title>Biomedical Document Retrieval for Clinical Decision Support System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jainisha</namePart>
<namePart type="family">Sankhavara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeniya</namePart>
<namePart type="family">Tabassum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Voigt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The availability of huge amount of biomedical literature have opened up new possibilities to apply Information Retrieval and NLP for mining documents from them. In this work, we are focusing on biomedical document retrieval from literature for clinical decision support systems. We compare statistical and NLP based approaches of query reformulation for biomedical document retrieval. Also, we have modeled the biomedical document retrieval as a learning to rank problem. We report initial results for statistical and NLP based query reformulation approaches and learning to rank approach with future direction of research.</abstract>
<identifier type="citekey">sankhavara-2018-biomedical</identifier>
<identifier type="doi">10.18653/v1/P18-3012</identifier>
<location>
<url>https://aclanthology.org/P18-3012</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>84</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Biomedical Document Retrieval for Clinical Decision Support System
%A Sankhavara, Jainisha
%Y Shwartz, Vered
%Y Tabassum, Jeniya
%Y Voigt, Rob
%Y Che, Wanxiang
%Y de Marneffe, Marie-Catherine
%Y Nissim, Malvina
%S Proceedings of ACL 2018, Student Research Workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F sankhavara-2018-biomedical
%X The availability of huge amount of biomedical literature have opened up new possibilities to apply Information Retrieval and NLP for mining documents from them. In this work, we are focusing on biomedical document retrieval from literature for clinical decision support systems. We compare statistical and NLP based approaches of query reformulation for biomedical document retrieval. Also, we have modeled the biomedical document retrieval as a learning to rank problem. We report initial results for statistical and NLP based query reformulation approaches and learning to rank approach with future direction of research.
%R 10.18653/v1/P18-3012
%U https://aclanthology.org/P18-3012
%U https://doi.org/10.18653/v1/P18-3012
%P 84-90
Markdown (Informal)
[Biomedical Document Retrieval for Clinical Decision Support System](https://aclanthology.org/P18-3012) (Sankhavara, ACL 2018)
ACL