@inproceedings{kezar-2018-mixed,
title = "Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Categories",
author = "Kezar, Lee",
editor = "Shwartz, Vered and
Tabassum, Jeniya and
Voigt, Rob and
Che, Wanxiang and
de Marneffe, Marie-Catherine and
Nissim, Malvina",
booktitle = "Proceedings of {ACL} 2018, Student Research Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-3020",
doi = "10.18653/v1/P18-3020",
pages = "141--145",
abstract = "Conversational agents, having the goal of natural language generation, must rely on language models which can integrate emotion into their responses. Recent projects outline models which can produce emotional sentences, but unlike human language, they tend to be restricted to one affective category out of a few. To my knowledge, none allow for the intentional coexistence of multiple emotions on the word or sentence level. Building on prior research which allows for variation in the intensity of a singular emotion, this research proposal outlines an LSTM (Long Short-Term Memory) language model which allows for variation in multiple emotions simultaneously.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kezar-2018-mixed">
<titleInfo>
<title>Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Categories</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lee</namePart>
<namePart type="family">Kezar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeniya</namePart>
<namePart type="family">Tabassum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Voigt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational agents, having the goal of natural language generation, must rely on language models which can integrate emotion into their responses. Recent projects outline models which can produce emotional sentences, but unlike human language, they tend to be restricted to one affective category out of a few. To my knowledge, none allow for the intentional coexistence of multiple emotions on the word or sentence level. Building on prior research which allows for variation in the intensity of a singular emotion, this research proposal outlines an LSTM (Long Short-Term Memory) language model which allows for variation in multiple emotions simultaneously.</abstract>
<identifier type="citekey">kezar-2018-mixed</identifier>
<identifier type="doi">10.18653/v1/P18-3020</identifier>
<location>
<url>https://aclanthology.org/P18-3020</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>141</start>
<end>145</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Categories
%A Kezar, Lee
%Y Shwartz, Vered
%Y Tabassum, Jeniya
%Y Voigt, Rob
%Y Che, Wanxiang
%Y de Marneffe, Marie-Catherine
%Y Nissim, Malvina
%S Proceedings of ACL 2018, Student Research Workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F kezar-2018-mixed
%X Conversational agents, having the goal of natural language generation, must rely on language models which can integrate emotion into their responses. Recent projects outline models which can produce emotional sentences, but unlike human language, they tend to be restricted to one affective category out of a few. To my knowledge, none allow for the intentional coexistence of multiple emotions on the word or sentence level. Building on prior research which allows for variation in the intensity of a singular emotion, this research proposal outlines an LSTM (Long Short-Term Memory) language model which allows for variation in multiple emotions simultaneously.
%R 10.18653/v1/P18-3020
%U https://aclanthology.org/P18-3020
%U https://doi.org/10.18653/v1/P18-3020
%P 141-145
Markdown (Informal)
[Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Categories](https://aclanthology.org/P18-3020) (Kezar, ACL 2018)
ACL