@inproceedings{white-etal-2018-novelperspective,
title = "{N}ovel{P}erspective: Identifying Point of View Characters",
author = "White, Lyndon and
Togneri, Roberto and
Liu, Wei and
Bennamoun, Mohammed",
editor = "Liu, Fei and
Solorio, Thamar",
booktitle = "Proceedings of {ACL} 2018, System Demonstrations",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-4002/",
doi = "10.18653/v1/P18-4002",
pages = "7--12",
abstract = "We present NovelPerspective: a tool to allow consumers to subset their digital literature, based on point of view (POV) character. Many novels have multiple main characters each with their own storyline running in parallel. A well-known example is George R. R. Martin`s novel: {\textquotedblleft}A Game of Thrones{\textquotedblright}, and others from that series. Our tool detects the main character that each section is from the POV of, and allows the user to generate a new ebook with only those sections. This gives consumers new options in how they consume their media; allowing them to pursue the storylines sequentially, or skip chapters about characters they find boring. We present two heuristic-based baselines, and two machine learning based methods for the detection of the main character."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="white-etal-2018-novelperspective">
<titleInfo>
<title>NovelPerspective: Identifying Point of View Characters</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lyndon</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Togneri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Bennamoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present NovelPerspective: a tool to allow consumers to subset their digital literature, based on point of view (POV) character. Many novels have multiple main characters each with their own storyline running in parallel. A well-known example is George R. R. Martin‘s novel: “A Game of Thrones”, and others from that series. Our tool detects the main character that each section is from the POV of, and allows the user to generate a new ebook with only those sections. This gives consumers new options in how they consume their media; allowing them to pursue the storylines sequentially, or skip chapters about characters they find boring. We present two heuristic-based baselines, and two machine learning based methods for the detection of the main character.</abstract>
<identifier type="citekey">white-etal-2018-novelperspective</identifier>
<identifier type="doi">10.18653/v1/P18-4002</identifier>
<location>
<url>https://aclanthology.org/P18-4002/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>7</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NovelPerspective: Identifying Point of View Characters
%A White, Lyndon
%A Togneri, Roberto
%A Liu, Wei
%A Bennamoun, Mohammed
%Y Liu, Fei
%Y Solorio, Thamar
%S Proceedings of ACL 2018, System Demonstrations
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F white-etal-2018-novelperspective
%X We present NovelPerspective: a tool to allow consumers to subset their digital literature, based on point of view (POV) character. Many novels have multiple main characters each with their own storyline running in parallel. A well-known example is George R. R. Martin‘s novel: “A Game of Thrones”, and others from that series. Our tool detects the main character that each section is from the POV of, and allows the user to generate a new ebook with only those sections. This gives consumers new options in how they consume their media; allowing them to pursue the storylines sequentially, or skip chapters about characters they find boring. We present two heuristic-based baselines, and two machine learning based methods for the detection of the main character.
%R 10.18653/v1/P18-4002
%U https://aclanthology.org/P18-4002/
%U https://doi.org/10.18653/v1/P18-4002
%P 7-12
Markdown (Informal)
[NovelPerspective: Identifying Point of View Characters](https://aclanthology.org/P18-4002/) (White et al., ACL 2018)
ACL