@inproceedings{ravenscroft-etal-2018-harrigt,
title = "{H}arri{GT}: A Tool for Linking News to Science",
author = "Ravenscroft, James and
Clare, Amanda and
Liakata, Maria",
editor = "Liu, Fei and
Solorio, Thamar",
booktitle = "Proceedings of {ACL} 2018, System Demonstrations",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-4004/",
doi = "10.18653/v1/P18-4004",
pages = "19--24",
abstract = "Being able to reliably link scientific works to the newspaper articles that discuss them could provide a breakthrough in the way we rationalise and measure the impact of science on our society. Linking these articles is challenging because the language used in the two domains is very different, and the gathering of online resources to align the two is a substantial information retrieval endeavour. We present HarriGT, a semi-automated tool for building corpora of news articles linked to the scientific papers that they discuss. Our aim is to facilitate future development of information-retrieval tools for newspaper/scientific work citation linking. HarriGT retrieves newspaper articles from an archive containing 17 years of UK web content. It also integrates with 3 large external citation networks, leveraging named entity extraction, and document classification to surface relevant examples of scientific literature to the user. We also provide a tuned candidate ranking algorithm to highlight potential links between scientific papers and newspaper articles to the user, in order of likelihood. HarriGT is provided as an open source tool (\url{http://harrigt.xyz})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ravenscroft-etal-2018-harrigt">
<titleInfo>
<title>HarriGT: A Tool for Linking News to Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Ravenscroft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Clare</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Being able to reliably link scientific works to the newspaper articles that discuss them could provide a breakthrough in the way we rationalise and measure the impact of science on our society. Linking these articles is challenging because the language used in the two domains is very different, and the gathering of online resources to align the two is a substantial information retrieval endeavour. We present HarriGT, a semi-automated tool for building corpora of news articles linked to the scientific papers that they discuss. Our aim is to facilitate future development of information-retrieval tools for newspaper/scientific work citation linking. HarriGT retrieves newspaper articles from an archive containing 17 years of UK web content. It also integrates with 3 large external citation networks, leveraging named entity extraction, and document classification to surface relevant examples of scientific literature to the user. We also provide a tuned candidate ranking algorithm to highlight potential links between scientific papers and newspaper articles to the user, in order of likelihood. HarriGT is provided as an open source tool (http://harrigt.xyz).</abstract>
<identifier type="citekey">ravenscroft-etal-2018-harrigt</identifier>
<identifier type="doi">10.18653/v1/P18-4004</identifier>
<location>
<url>https://aclanthology.org/P18-4004/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>19</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HarriGT: A Tool for Linking News to Science
%A Ravenscroft, James
%A Clare, Amanda
%A Liakata, Maria
%Y Liu, Fei
%Y Solorio, Thamar
%S Proceedings of ACL 2018, System Demonstrations
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F ravenscroft-etal-2018-harrigt
%X Being able to reliably link scientific works to the newspaper articles that discuss them could provide a breakthrough in the way we rationalise and measure the impact of science on our society. Linking these articles is challenging because the language used in the two domains is very different, and the gathering of online resources to align the two is a substantial information retrieval endeavour. We present HarriGT, a semi-automated tool for building corpora of news articles linked to the scientific papers that they discuss. Our aim is to facilitate future development of information-retrieval tools for newspaper/scientific work citation linking. HarriGT retrieves newspaper articles from an archive containing 17 years of UK web content. It also integrates with 3 large external citation networks, leveraging named entity extraction, and document classification to surface relevant examples of scientific literature to the user. We also provide a tuned candidate ranking algorithm to highlight potential links between scientific papers and newspaper articles to the user, in order of likelihood. HarriGT is provided as an open source tool (http://harrigt.xyz).
%R 10.18653/v1/P18-4004
%U https://aclanthology.org/P18-4004/
%U https://doi.org/10.18653/v1/P18-4004
%P 19-24
Markdown (Informal)
[HarriGT: A Tool for Linking News to Science](https://aclanthology.org/P18-4004/) (Ravenscroft et al., ACL 2018)
ACL
- James Ravenscroft, Amanda Clare, and Maria Liakata. 2018. HarriGT: A Tool for Linking News to Science. In Proceedings of ACL 2018, System Demonstrations, pages 19–24, Melbourne, Australia. Association for Computational Linguistics.