@inproceedings{yang-etal-2018-yedda,
title = "{YEDDA}: A Lightweight Collaborative Text Span Annotation Tool",
author = "Yang, Jie and
Zhang, Yue and
Li, Linwei and
Li, Xingxuan",
editor = "Liu, Fei and
Solorio, Thamar",
booktitle = "Proceedings of {ACL} 2018, System Demonstrations",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-4006/",
doi = "10.18653/v1/P18-4006",
pages = "31--36",
abstract = "In this paper, we introduce Yedda, a lightweight but efficient and comprehensive open-source tool for text span annotation. Yedda provides a systematic solution for text span annotation, ranging from collaborative user annotation to administrator evaluation and analysis. It overcomes the low efficiency of traditional text annotation tools by annotating entities through both command line and shortcut keys, which are configurable with custom labels. Yedda also gives intelligent recommendations by learning the up-to-date annotated text. An administrator client is developed to evaluate annotation quality of multiple annotators and generate detailed comparison report for each annotator pair. Experiments show that the proposed system can reduce the annotation time by half compared with existing annotation tools. And the annotation time can be further compressed by 16.47{\%} through intelligent recommendation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2018-yedda">
<titleInfo>
<title>YEDDA: A Lightweight Collaborative Text Span Annotation Tool</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linwei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingxuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce Yedda, a lightweight but efficient and comprehensive open-source tool for text span annotation. Yedda provides a systematic solution for text span annotation, ranging from collaborative user annotation to administrator evaluation and analysis. It overcomes the low efficiency of traditional text annotation tools by annotating entities through both command line and shortcut keys, which are configurable with custom labels. Yedda also gives intelligent recommendations by learning the up-to-date annotated text. An administrator client is developed to evaluate annotation quality of multiple annotators and generate detailed comparison report for each annotator pair. Experiments show that the proposed system can reduce the annotation time by half compared with existing annotation tools. And the annotation time can be further compressed by 16.47% through intelligent recommendation.</abstract>
<identifier type="citekey">yang-etal-2018-yedda</identifier>
<identifier type="doi">10.18653/v1/P18-4006</identifier>
<location>
<url>https://aclanthology.org/P18-4006/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>31</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YEDDA: A Lightweight Collaborative Text Span Annotation Tool
%A Yang, Jie
%A Zhang, Yue
%A Li, Linwei
%A Li, Xingxuan
%Y Liu, Fei
%Y Solorio, Thamar
%S Proceedings of ACL 2018, System Demonstrations
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F yang-etal-2018-yedda
%X In this paper, we introduce Yedda, a lightweight but efficient and comprehensive open-source tool for text span annotation. Yedda provides a systematic solution for text span annotation, ranging from collaborative user annotation to administrator evaluation and analysis. It overcomes the low efficiency of traditional text annotation tools by annotating entities through both command line and shortcut keys, which are configurable with custom labels. Yedda also gives intelligent recommendations by learning the up-to-date annotated text. An administrator client is developed to evaluate annotation quality of multiple annotators and generate detailed comparison report for each annotator pair. Experiments show that the proposed system can reduce the annotation time by half compared with existing annotation tools. And the annotation time can be further compressed by 16.47% through intelligent recommendation.
%R 10.18653/v1/P18-4006
%U https://aclanthology.org/P18-4006/
%U https://doi.org/10.18653/v1/P18-4006
%P 31-36
Markdown (Informal)
[YEDDA: A Lightweight Collaborative Text Span Annotation Tool](https://aclanthology.org/P18-4006/) (Yang et al., ACL 2018)
ACL