@inproceedings{yang-zhang-2018-ncrf,
title = "{NCRF}++: An Open-source Neural Sequence Labeling Toolkit",
author = "Yang, Jie and
Zhang, Yue",
editor = "Liu, Fei and
Solorio, Thamar",
booktitle = "Proceedings of {ACL} 2018, System Demonstrations",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-4013",
doi = "10.18653/v1/P18-4013",
pages = "74--79",
abstract = "This paper describes NCRF++, a toolkit for neural sequence labeling. NCRF++ is designed for quick implementation of different neural sequence labeling models with a CRF inference layer. It provides users with an inference for building the custom model structure through configuration file with flexible neural feature design and utilization. Built on PyTorch \url{http://pytorch.org/}, the core operations are calculated in batch, making the toolkit efficient with the acceleration of GPU. It also includes the implementations of most state-of-the-art neural sequence labeling models such as LSTM-CRF, facilitating reproducing and refinement on those methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-zhang-2018-ncrf">
<titleInfo>
<title>NCRF++: An Open-source Neural Sequence Labeling Toolkit</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes NCRF++, a toolkit for neural sequence labeling. NCRF++ is designed for quick implementation of different neural sequence labeling models with a CRF inference layer. It provides users with an inference for building the custom model structure through configuration file with flexible neural feature design and utilization. Built on PyTorch http://pytorch.org/, the core operations are calculated in batch, making the toolkit efficient with the acceleration of GPU. It also includes the implementations of most state-of-the-art neural sequence labeling models such as LSTM-CRF, facilitating reproducing and refinement on those methods.</abstract>
<identifier type="citekey">yang-zhang-2018-ncrf</identifier>
<identifier type="doi">10.18653/v1/P18-4013</identifier>
<location>
<url>https://aclanthology.org/P18-4013</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>74</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NCRF++: An Open-source Neural Sequence Labeling Toolkit
%A Yang, Jie
%A Zhang, Yue
%Y Liu, Fei
%Y Solorio, Thamar
%S Proceedings of ACL 2018, System Demonstrations
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F yang-zhang-2018-ncrf
%X This paper describes NCRF++, a toolkit for neural sequence labeling. NCRF++ is designed for quick implementation of different neural sequence labeling models with a CRF inference layer. It provides users with an inference for building the custom model structure through configuration file with flexible neural feature design and utilization. Built on PyTorch http://pytorch.org/, the core operations are calculated in batch, making the toolkit efficient with the acceleration of GPU. It also includes the implementations of most state-of-the-art neural sequence labeling models such as LSTM-CRF, facilitating reproducing and refinement on those methods.
%R 10.18653/v1/P18-4013
%U https://aclanthology.org/P18-4013
%U https://doi.org/10.18653/v1/P18-4013
%P 74-79
Markdown (Informal)
[NCRF++: An Open-source Neural Sequence Labeling Toolkit](https://aclanthology.org/P18-4013) (Yang & Zhang, ACL 2018)
ACL