@inproceedings{romeo-etal-2018-flexible,
title = "A Flexible, Efficient and Accurate Framework for Community Question Answering Pipelines",
author = "Romeo, Salvatore and
Da San Martino, Giovanni and
Barr{\'o}n-Cede{\~n}o, Alberto and
Moschitti, Alessandro",
editor = "Liu, Fei and
Solorio, Thamar",
booktitle = "Proceedings of {ACL} 2018, System Demonstrations",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-4023",
doi = "10.18653/v1/P18-4023",
pages = "134--139",
abstract = "Although deep neural networks have been proving to be excellent tools to deliver state-of-the-art results, when data is scarce and the tackled tasks involve complex semantic inference, deep linguistic processing and traditional structure-based approaches, such as tree kernel methods, are an alternative solution. Community Question Answering is a research area that benefits from deep linguistic analysis to improve the experience of the community of forum users. In this paper, we present a UIMA framework to distribute the computation of cQA tasks over computer clusters such that traditional systems can scale to large datasets and deliver fast processing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="romeo-etal-2018-flexible">
<titleInfo>
<title>A Flexible, Efficient and Accurate Framework for Community Question Answering Pipelines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Romeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Moschitti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although deep neural networks have been proving to be excellent tools to deliver state-of-the-art results, when data is scarce and the tackled tasks involve complex semantic inference, deep linguistic processing and traditional structure-based approaches, such as tree kernel methods, are an alternative solution. Community Question Answering is a research area that benefits from deep linguistic analysis to improve the experience of the community of forum users. In this paper, we present a UIMA framework to distribute the computation of cQA tasks over computer clusters such that traditional systems can scale to large datasets and deliver fast processing.</abstract>
<identifier type="citekey">romeo-etal-2018-flexible</identifier>
<identifier type="doi">10.18653/v1/P18-4023</identifier>
<location>
<url>https://aclanthology.org/P18-4023</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>134</start>
<end>139</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Flexible, Efficient and Accurate Framework for Community Question Answering Pipelines
%A Romeo, Salvatore
%A Da San Martino, Giovanni
%A Barrón-Cedeño, Alberto
%A Moschitti, Alessandro
%Y Liu, Fei
%Y Solorio, Thamar
%S Proceedings of ACL 2018, System Demonstrations
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F romeo-etal-2018-flexible
%X Although deep neural networks have been proving to be excellent tools to deliver state-of-the-art results, when data is scarce and the tackled tasks involve complex semantic inference, deep linguistic processing and traditional structure-based approaches, such as tree kernel methods, are an alternative solution. Community Question Answering is a research area that benefits from deep linguistic analysis to improve the experience of the community of forum users. In this paper, we present a UIMA framework to distribute the computation of cQA tasks over computer clusters such that traditional systems can scale to large datasets and deliver fast processing.
%R 10.18653/v1/P18-4023
%U https://aclanthology.org/P18-4023
%U https://doi.org/10.18653/v1/P18-4023
%P 134-139
Markdown (Informal)
[A Flexible, Efficient and Accurate Framework for Community Question Answering Pipelines](https://aclanthology.org/P18-4023) (Romeo et al., ACL 2018)
ACL