@inproceedings{dubossarsky-etal-2019-time,
title = "Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change",
author = "Dubossarsky, Haim and
Hengchen, Simon and
Tahmasebi, Nina and
Schlechtweg, Dominik",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1044",
doi = "10.18653/v1/P19-1044",
pages = "457--470",
abstract = "State-of-the-art models of lexical semantic change detection suffer from noise stemming from vector space alignment. We have empirically tested the Temporal Referencing method for lexical semantic change and show that, by avoiding alignment, it is less affected by this noise. We show that, trained on a diachronic corpus, the skip-gram with negative sampling architecture with temporal referencing outperforms alignment models on a synthetic task as well as a manual testset. We introduce a principled way to simulate lexical semantic change and systematically control for possible biases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dubossarsky-etal-2019-time">
<titleInfo>
<title>Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haim</namePart>
<namePart type="family">Dubossarsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Hengchen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Tahmasebi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schlechtweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art models of lexical semantic change detection suffer from noise stemming from vector space alignment. We have empirically tested the Temporal Referencing method for lexical semantic change and show that, by avoiding alignment, it is less affected by this noise. We show that, trained on a diachronic corpus, the skip-gram with negative sampling architecture with temporal referencing outperforms alignment models on a synthetic task as well as a manual testset. We introduce a principled way to simulate lexical semantic change and systematically control for possible biases.</abstract>
<identifier type="citekey">dubossarsky-etal-2019-time</identifier>
<identifier type="doi">10.18653/v1/P19-1044</identifier>
<location>
<url>https://aclanthology.org/P19-1044</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>457</start>
<end>470</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change
%A Dubossarsky, Haim
%A Hengchen, Simon
%A Tahmasebi, Nina
%A Schlechtweg, Dominik
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F dubossarsky-etal-2019-time
%X State-of-the-art models of lexical semantic change detection suffer from noise stemming from vector space alignment. We have empirically tested the Temporal Referencing method for lexical semantic change and show that, by avoiding alignment, it is less affected by this noise. We show that, trained on a diachronic corpus, the skip-gram with negative sampling architecture with temporal referencing outperforms alignment models on a synthetic task as well as a manual testset. We introduce a principled way to simulate lexical semantic change and systematically control for possible biases.
%R 10.18653/v1/P19-1044
%U https://aclanthology.org/P19-1044
%U https://doi.org/10.18653/v1/P19-1044
%P 457-470
Markdown (Informal)
[Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change](https://aclanthology.org/P19-1044) (Dubossarsky et al., ACL 2019)
ACL