@inproceedings{durmus-cardie-2019-corpus,
title = "A Corpus for Modeling User and Language Effects in Argumentation on Online Debating",
author = "Durmus, Esin and
Cardie, Claire",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1057/",
doi = "10.18653/v1/P19-1057",
pages = "602--607",
abstract = "Existing argumentation datasets have succeeded in allowing researchers to develop computational methods for analyzing the content, structure and linguistic features of argumentative text. They have been much less successful in fostering studies of the effect of {\textquotedblleft}user{\textquotedblright} traits {---} characteristics and beliefs of the participants {---} on the debate/argument outcome as this type of user information is generally not available. This paper presents a dataset of 78,376 debates generated over a 10-year period along with surprisingly comprehensive participant profiles. We also complete an example study using the dataset to analyze the effect of selected user traits on the debate outcome in comparison to the linguistic features typically employed in studies of this kind."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="durmus-cardie-2019-corpus">
<titleInfo>
<title>A Corpus for Modeling User and Language Effects in Argumentation on Online Debating</title>
</titleInfo>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Cardie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing argumentation datasets have succeeded in allowing researchers to develop computational methods for analyzing the content, structure and linguistic features of argumentative text. They have been much less successful in fostering studies of the effect of “user” traits — characteristics and beliefs of the participants — on the debate/argument outcome as this type of user information is generally not available. This paper presents a dataset of 78,376 debates generated over a 10-year period along with surprisingly comprehensive participant profiles. We also complete an example study using the dataset to analyze the effect of selected user traits on the debate outcome in comparison to the linguistic features typically employed in studies of this kind.</abstract>
<identifier type="citekey">durmus-cardie-2019-corpus</identifier>
<identifier type="doi">10.18653/v1/P19-1057</identifier>
<location>
<url>https://aclanthology.org/P19-1057/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>602</start>
<end>607</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Corpus for Modeling User and Language Effects in Argumentation on Online Debating
%A Durmus, Esin
%A Cardie, Claire
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F durmus-cardie-2019-corpus
%X Existing argumentation datasets have succeeded in allowing researchers to develop computational methods for analyzing the content, structure and linguistic features of argumentative text. They have been much less successful in fostering studies of the effect of “user” traits — characteristics and beliefs of the participants — on the debate/argument outcome as this type of user information is generally not available. This paper presents a dataset of 78,376 debates generated over a 10-year period along with surprisingly comprehensive participant profiles. We also complete an example study using the dataset to analyze the effect of selected user traits on the debate outcome in comparison to the linguistic features typically employed in studies of this kind.
%R 10.18653/v1/P19-1057
%U https://aclanthology.org/P19-1057/
%U https://doi.org/10.18653/v1/P19-1057
%P 602-607
Markdown (Informal)
[A Corpus for Modeling User and Language Effects in Argumentation on Online Debating](https://aclanthology.org/P19-1057/) (Durmus & Cardie, ACL 2019)
ACL