Errudite: Scalable, Reproducible, and Testable Error Analysis

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, Daniel Weld


Abstract
Though error analysis is crucial to understanding and improving NLP models, the common practice of manual, subjective categorization of a small sample of errors can yield biased and incomplete conclusions. This paper codifies model and task agnostic principles for informative error analysis, and presents Errudite, an interactive tool for better supporting this process. First, error groups should be precisely defined for reproducibility; Errudite supports this with an expressive domain-specific language. Second, to avoid spurious conclusions, a large set of instances should be analyzed, including both positive and negative examples; Errudite enables systematic grouping of relevant instances with filtering queries. Third, hypotheses about the cause of errors should be explicitly tested; Errudite supports this via automated counterfactual rewriting. We validate our approach with a user study, finding that Errudite (1) enables users to perform high quality and reproducible error analyses with less effort, (2) reveals substantial ambiguities in prior published error analyses practices, and (3) enhances the error analysis experience by allowing users to test and revise prior beliefs.
Anthology ID:
P19-1073
Volume:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Month:
July
Year:
2019
Address:
Florence, Italy
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
747–763
Language:
URL:
https://aclanthology.org/P19-1073
DOI:
10.18653/v1/P19-1073
Bibkey:
Cite (ACL):
Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2019. Errudite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 747–763, Florence, Italy. Association for Computational Linguistics.
Cite (Informal):
Errudite: Scalable, Reproducible, and Testable Error Analysis (Wu et al., ACL 2019)
Copy Citation:
PDF:
https://aclanthology.org/P19-1073.pdf
Code
 uwdata/errudite
Data
SQuADVisual Question Answering