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Abstract

Authorship verification is the task of deter-
mining whether or not two texts were written
by the same author. This paper deals with
the adversary task, called authorship obfusca-
tion: Preventing verification by altering a to-
be-obfuscated text. We introduce an approach
that (1) models writing style difference as the
Jensen-Shannon distance between the charac-
ter n-gram distributions of texts, and (2) ma-
nipulates an author’s subconsciously encoded
writing style in a sophisticated manner using
heuristic search. To obfuscate, we explore the
huge space of textual variants in order to find
a paraphrased version of the to-be-obfuscated
text that has a sufficient Jensen-Shannon dis-
tance at minimal costs in terms of text quality
loss. We analyze, quantify, and illustrate the
rationale of this approach, define paraphrasing
operators, derive obfuscation thresholds, and
develop an effective obfuscation framework.
Our authorship obfuscation approach defeats
state-of-the-art verification approaches, includ-
ing unmasking and compression models, while
keeping text changes at a minimum.

1 Introduction

Can the authorial style of a text be consistently ma-
nipulated? More than a century worth of research
on stylometry and authorship analysis could not
produce a reliable approach to do so manually. In
the context of computational authorship obfusca-
tion, a handful of approaches have achieved some
limited success but are still rather insufficient. Rule-
based approaches are neither flexible, nor is stylom-
etry understood well enough to compile rule sets
that specifically target author style. Monolingual
machine translation-based approaches suffer from
a lack of training data, whereas applying multilin-
gual translation in a cyclic manner as a workaround
has proved to be ineffective. In addition, none of
the existing approaches offers a means to control

the result quality. Given recent advances in con-
trolled text generation, it stands to reason that a lot
more can be achieved.

In this paper, we depart from the mentioned ob-
fuscation paradigms and, for the first time, cast
author obfuscation as a heuristic search problem.
Given a to-be-obfuscated text, we search for a cost-
minimum sequence of tailored paraphrasing op-
erations that achieve a significant increase of the
text’s style distance to other texts from the same
author under a generic writing style representation;
costs accrue through operations in terms of their
estimated text quality reduction. By designing a hy-
brid search strategy that neglects admissibility only
in the pooling phase, we obtain a significant reduc-
tion of the exponentially growing search space that
is induced by the paraphrasing operators, enabling
the use of informed search algorithms. Moreover,
we developed a sophisticated framework to deal
with the conflicting objectives that naturally arise
with such kind of complex text synthesis tasks: a
compact representation of the search space of para-
phrased text variants, and an effective and efficient,
non-monotonic exploration of this search space.1

Our key contributions are a greedy obfuscation
approach that maximizes obfuscation gain per op-
eration (Section 3); based on that, an obfuscation
heuristic that reconciles obfuscation gain with text
quality loss (Section 4); as well as an extensive
comparative evaluation (Section 5). Relevant code
and research data is released publicly on GitHub.2

2 Related Work

Authorship analysis dates back over 120 years
(Bourne, 1897) and has mostly dealt with author-
ship attribution (given a text of unknown authorship
and texts from known candidate authors, attribute

1Up to 10,000 text variants per second on a standard PC.
2Code and data: https://github.com/webis-de/acl-19

https://github.com/webis-de/acl-19
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the unknown text to its true author among the can-
didates). More recently, the task of authorship
verification attracted a lot of interest (given a text
of unknown authorship and a set of texts from one
known author, verify whether the unknown text is
written by that author) since it lies at the heart of
many authorship-related problems.

Systematic reviews on authorship analysis have
been contributed by Juola (2006) and Stamatatos
(2009) and the effectiveness of character 3-grams
today is “folklore knowledge,” albeit not systemat-
ically proven. Still, a complete list of stylometric
features has not been compiled to date. Abbasi and
Chen (2008) proposed writeprints, a set of over
twenty lexical, syntactic, and structural text feature
types, which has gained some notoriety within at-
tribution, verification, but also for “anonymizing”
texts (Zheng et al., 2006; Narayanan et al., 2012;
Iqbal et al., 2008; McDonald et al., 2012).

Instead of relying on a rich feature set, Zhao
et al. (2006) only extract POS tag distributions and
interpret style differences as measurable by the
Kullback-Leibler divergence. Teahan and Harper
(2003) and Khmelev and Teahan (2003) use com-
pression as an indirect means to measure stylistic
difference; later adapted and improved by Halvani
et al. (2017). Koppel and Schler (2004) developed
the unmasking approach based on the 250 most
frequent function words, which are iteratively re-
moved, effectively reducing the differentiability
between the texts. The idea behind this approach
is that texts written by the same author only differ
in few superficial features. By removing those su-
perficial features, differentiability between texts by
the same author is expected to degrade faster than
for texts written by different authors.

Among the first to tackle authorship obfuscation
were Rao and Rohatgi (2000), who used cyclic ma-
chine translation. Later Brennan et al. (2012) found
that machine translation is ineffective and due to
its blackbox character also rather uncontrollable.
Instead, Xu et al. (2012) proposed within-language
machine translation to translate directly between
styles. The practicality of this approach, however,
is diminished by the general lack of large-scale par-
allel training data. Another obfuscation approach
by Kacmarcik and Gamon (2006) directly targets
Koppel and Schler’s unmasking. By iteratively re-
moving the most discriminatory text features, the
classification performance of an unmasking verifier
is degraded—at the cost of rather unreadable texts.

From 2016 to 2018, a shared task on authorship
obfuscation was organized at PAN (Potthast et al.,
2018). Some of the seven participating teams sug-
gested rather conservative rule-based approaches
that do not change a text sufficiently to obfuscate
authorship against most state-of-the-art verifiers
but other obfuscators “fooled” several verifiers,
yet again, generating rather unreadable texts. To
score high in terms of text quality and obfusca-
tion performance, the shared task organizers asked
for approaches that more carefully paraphrase a
text (i.e., the meaning should stay the same and
the text should still be readable). Our new author-
ship obfuscation approach is inspired by Stein et al.
(2014)’s heuristic paraphrasing idea for “encoding”
an acrostic in a given text and by Kacmarcik and
Gamon’s observation that changing rather few text
passages may successfully obfuscate authorship.

3 Greedy Obfuscation

We approach obfuscation from a verification per-
spective: Given texts from the same author, one of
which is not publicly known to be written by that
author, the goal is to paraphrase that text so that ver-
ification attempts against the other texts fail. In this
setting, the key element of our heuristic obfusca-
tion approach is a basic, yet powerful distributional
representation of writing style: the Jensen-Shannon
distance of the character trigram frequency distri-
bution of the to-be-obfuscated text compared to the
others. This model serves three purposes at once:
(1) as a stopping criterion, (2) as a primary selection
criterion for parts of the text that will yield the high-
est obfuscation gains if changed, and, (3) as part of
our heuristic enabling informed search, which rec-
onciles obfuscation gain with potential text quality
loss. In what follows, we formally motivate these
dimensions.

3.1 Measuring Stylistic Distance

In order to know when to stop obfuscating a text
we require a style distance measure. Once a text
has been changed sufficiently and its style distance
to other texts from the same author exceeds a given
threshold, the obfuscator terminates.3

By utilizing character trigram frequencies to rep-
resent texts, we employ one of the most versatile

3Another possibility is to stop once the decision of existing
verifiers switches to different-authors. However, this would
introduce many more hyperparameters and biases regarding
the verifiers, let alone the prohibitive runtime overhead.
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yet simple features available for authorship anal-
ysis, encoding many aspects of authorial style at
the same time including vocabulary, morphology,
and punctuation. Based on this representation, we
consider the well-known Kullback-Leibler diver-
gence (KLD) as a style distance measure:

KLD(P‖Q) =
∑

i

P [i] log P [i]
Q[i] , (1)

where P and Q are discrete probability distribu-
tions corresponding to the relative frequencies of
character trigrams in the to-be-obfuscated text and
the known texts respectively. For true probability
distributions, the KLD is always non-negative.

The KLD has shortcomings. First, it is asymmet-
ric, so it is not entirely clear which character distri-
bution should be P and which should be Q when
comparing texts. Second, the KLD is defined only
for distributions P and Q where Q[i] = 0 implies
P [i] = 0. Conversely, P [i] = 0 yields a zero sum-
mand. Since we want to avoid reducing or skewing
the measure further by “subsetting” or smoothing
the trigrams, we resort to the Jensen-Shannon dis-
tance JS∆ (Endres and Schindelin, 2003) in lieu of
the KLD. The JS∆ is a metric based on the sym-
metric Jensen-Shannon divergence (JSD) that is
defined as

JSD(P‖Q) = KLD(P‖M) + KLD(Q‖M)
2 ,

(2)
with

M = P + Q

2 . (3)

Introducing the artificial distribution M circum-
vents the KLD’s problem of samples of one dis-
tribution being unknown in the other. Since M [i]
can never be 0 for any i with P [i] + Q[i] > 0, all
summands of either KLD(P‖M) or KLD(Q‖M)
must also be non-zero. Using the base-2 loga-
rithm in the KLD, the JSD is [0, 1]-bounded. The
JS∆ metric is derived as

JS∆(P, Q) =
√

2 · JSD(P‖Q) . (4)

3.2 Adaptive Obfuscation Thresholds

During pilot experiments on our training data, we
observed that a fixed JS∆ threshold as the obfusca-
tion target is a bad idea: it leads to over- or under-
obfuscation for text pairs that have an a-priori high
or low style distance. It also turned out that JS∆
is inversely correlated with text length: pairs of
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Figure 1: JS∆ in our training data over text length.
Each line corresponds to a text pair The straight lines
indicate the 0th and the 50th percentiles of distances
within the true different-authors cases.

long texts are less distant to each other than pairs
of short texts, since, the shorter a text the sparser
and noisier is its trigram distribution. This even
holds if the texts are written by the same author.
Figure 1 plots the JS∆ over the text length in our
training data, revealing an approximately logarith-
mic relationship. The most interesting observation
is the almost length-invariant spread of the result-
ing curves. Moreover, depending on their class, the
curves tend to converge towards the upper / lower
bounds of this spread with growing length, thus
being visibly separated.

Assuming that the observed JS∆-to-length rela-
tionship generalizes to other text pairs of similar
length—a hypothesis which merits further investi-
gation in future work—, we measure style distance
in JS∆@L (Jensen-Shannon distance at length) and
fit threshold lines to define obfuscation levels. Ta-
ble 1 details the obfuscation levels εk correspond-
ing to a linear least-squares fit on the logarithmic
scale through a given level’s k-th percentile of the
distribution of JS∆ in the different-authors class;
the 0th percentile ε0 and the 50th percentile ε0.5 are
displayed in Figure 1. The ε0 threshold serves as
an obfuscation baseline, indicating a same-author
case as unobfuscated, if the JS∆ between its doc-
uments is below this threshold. Otherwise, we
call the obfuscation moderate, strong, stronger,
and over-obfuscated, depending on the threshold
the JS∆ exceeds.

Regarding the line fit coefficients given in Ta-
ble 1, the gradients of higher ε thresholds are
slightly steeper, providing further evidence of the
convergence rate of different-authors cases. The ε0
threshold line will cross the x axis for text lengths
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Threshold Obfuscation level Slope Intercept

< ε0 No Obfuscation n / a n / a
≥ ε0 Moderate Obfuscation – 0.099 1.936
≥ ε0.5 Strong Obfuscation – 0.103 2.056
≥ ε0.7 Stronger Obfuscation – 0.104 2.083
> ε0.99 Over-obfuscation – 0.107 2.168

Table 1: Obfuscation levels and their log-scale polyno-
mial fit coefficients on our training corpus.

of x ≈ 219.5 characters. Since negative distances
are not sensible, such book-sized texts may be split
into smaller chunks, which then can be obfuscated
individually. Note that we were able to reproduce
these threshold observations on the PAN 2014 nov-
els corpus (Stamatatos et al., 2014), albeit obtain-
ing slightly different coefficients. In practice, we
recommend training the coefficients on an appro-
priate corpus matching genre and register of the
to-be-obfuscated texts.

3.3 Ranking Trigrams for Obfuscation
Our key idea to yield a strong obfuscation (com-
pared to other texts from the same author) is to
iteratively change the frequency of those trigrams
of the to-be-obfuscated text for which the positive
impact on JS∆ is maximum. In each iteration we
rank the trigrams by their influence on JS∆ via
their partial KLD derivative, assuming that proba-
bility distribution Q is to be obfuscated:

∂

∂ Q[i]

(
P [i] log2

P [i]
Q[i]

)
= − P [i]

Q[i] ln 2 . (5)

Omitting constants, we get the rank-equivalent

RKL(i) = P [i]
Q[i] . (6)

RKL gets larger with smaller Q[i]. I.e., a single
obfuscation step boils down to removing one oc-
currence of the most influential trigram from the
to-be-obfuscated text. This can be done naively by
simply “cutting it out” (which we tried as a proof-
of-concept), or, more sensibly, via a targeted para-
phrasing operation replacing a text passage with
the trigram by another semantically equivalent text
passage without the trigram. Then, the trigrams are
re-ranked and the procedure is repeated until JS∆
exceeds the desired obfuscation threshold. We call
this strategy obfuscation by reduction. Reversing
the roles of P and Q yields an addition strategy,
which we leave for future work.

The above described greedy obfuscation effec-
tively hindered verification in our pilot experiments.

However, the naive cut-it-out variant results in
rather unreadable texts, and, it may be easily “re-
verse engineered” by an informed verifier. Even
with more sophisticated paraphrasing operations, a
reverse-engineering attack against the greedy strat-
egy seems plausible. Thus, we suggest to aug-
ment the greedy approach with an informed search,
which is introduced in the next section.

4 Heuristic Search for Obfuscation

An author of a to-be-obfuscated text does obviously
not wish her text to be “foozled” due to obfuscation
(e.g., by naively cutting out trigrams). Actually, the
text has to convey the same message as before and,
ideally, it should look “inconspicuous” to an ex-
tent that readers do not suspect tampering (Potthast
et al., 2016). However, automatic paraphrasing is
still in its infancy: Beyond synonym substitution,
paraphrasing operators targeting single words have
hardly been devised so far. Still, the paraphras-
ing operators we are looking for do not have to
alter a text substantially, which enables us to better
estimate an operator’s negative impact on text qual-
ity. Furthermore, similar to the presented greedy
obfuscation, we can stop modifying a text when
the desired obfuscation threshold is reached, which
renders our approach “minimally invasive.” The
optimization goals can be summarized as follows:

1. Maximize the obfuscation as per the JS∆ be-
yond a given εk without “over-obfuscating.”

2. Minimize the accumulated text quality loss
from consecutive paraphrasing operations.

3. Minimize the number of text operations.

Heuristic search is our choice to tackle this op-
timization problem. We will pay attention to ad-
missibility for two reasons: (1) to understand (in
terms of modeling) the nature of the problem, and
(2) to be able to compute an optimum solution if
time and space constraints permit. However, due
to the exponential size of the induced state space
(text versions as nodes, paraphrasing operators as
edges), we may give up admissibility while staying
within acceptable error bounds. In the following,
we derive an admissible obfuscation heuristic and
suggest a small, viable set of basic paraphrasing
operators as an initial proof of concept.

4.1 An Admissible Obfuscation Heuristic
Let h(n) denote a heuristic estimating the optimal
cost for reaching a desired obfuscation threshold
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from node n, and let g(n) denote the path costs
to n starting at the original text node s.

Applying a paraphrasing operator has a highly
non-linear effect on text quality (some changes
are inconspicuous, others are not) and may also
restrict the set of applicable operators (in the same
text). For instance, applying the same operator a
third time in a row may entail higher (quality) costs
compared to applying it for the first time. This
means that different paths from s to n can come
with different estimations for the rest cost h(n)—in
a nutshell, the parent discarding property may not
hold (Pearl, 1984). A similar effect, but rooted in
a different cause, results from the observation that
some authors’ texts are easier to be obfuscated than
others. We can address both issues and re-install
the conditions for parent discarding and admissible
search by updating the operator costs for future
application beyond node n, such that g(n) turns
into “normalized path costs.”

Based on both the desired obfuscation thresh-
old ε and the JS distance JS∆n of the text at node n
to the other text(s) from the same author, we define
the prior heuristic as

hprior(n) = ε− JS∆n. (7)

The normalized path costs gnorm are defined
as the cost-to-gain ratio of the accumulated path
costs g(n) to total JS∆ change from start node s:

gnorm(n) = g(n)
JS∆n − JS∆s

. (8)

Finally, the heuristic h(n) is defined as the prod-
uct of hprior(n) and gnorm(n):

h(n) = (ε− JS∆n) · g(n)
JS∆n − JS∆s

. (9)

The prior heuristic guarantees convergence to-
wards zero as we approach a goal node that exceeds
the obfuscation threshold ε, while the normalized
path costs determine the slope of the heuristic.

Consistency and Admissibility
A heuristic h(n) is admissible if it does not ex-
ceed h∗(n), the true cost of reaching an optimum
goal via state n, for all n in the search space. Mono-
tonicity h(n) ≤ c(n, n′)+h(n′) is a sufficient con-
dition for admissibility, yet easier to show. Rewrit-
ing it as

−h(n′) + h(n) ≤ g(n′)− g(n),

and inserting in the heuristic Equation 9 yields

− (ε−JS∆n′ ) · g(n′)
JS∆n′ − JS∆s

+(ε−JS∆n) · g(n)
JS∆n − JS∆s

≤ g(n′)−g(n) .

Defining ḡ(n) = JS∆n − JS∆s as change func-
tion and inserting previous definitions we get

−hprior(n′) · g(n′)
ḡ(n′) − −hprior(n) · g(n)

ḡ(n) ≤ g(n′) − g(n) .

We know hprior(n) to be monotonically decreas-
ing, inverse to ḡ(n), and converging towards zero
as we approach a goal. If the cost and change func-
tions g(n) and ḡ(n) are equivalent up to scale, they
cancel out each other (up to scale), the slope of their
quotient becomes zero, and the inequality turns into
equality. Otherwise, if g(n) dominates ḡ(n), the
inequality still holds. Though, if ḡ(n) dominates
g(n), the sign of the quotient’s gradient flips (as
can be proved by the quotient rule), breaking the in-
equality and violating consistency. But since JS∆
is bounded by

√
2 globally, the change function

ḡ(n) cannot be superlinear.
Limitations of our argument: (1) occasionally

ḡ(n) can locally dominate g(n), and (2) both func-
tions are presumed differentiable at n. In practice,
the latter may hardly ever be true as texts are noisy,
text operation side effects are unpredictable, and,
the cumulative change function is not guaranteed to
be monotonic. Still, step costs c(n, n′) will never
be negative, which makes g(n) monotonic but not
necessarily differentiable. Thus, the heuristic func-
tion will not be fully consistent and may even over-
estimate.

In a practical scenario we can directly control
the cost but not the change function, so we will
have to deal with problems of overestimation and
local optima. Generally, the first few steps of a
search path are the most problematic since with
little prior information the heuristic has to extra-
polate based on very few data points, but is still
expected to accurately estimate the remaining costs.
Hence, an early heuristic is particularly suscepti-
ble to noise and can only give a coarse estimate.
With more cumulative cost and change informa-
tion available, the heuristic will stabilize towards
the mean cost-gain proportion and eventually con-
verge. This stabilization occurs quickly. In real
application scenarios, we keep overestimation at
a minimum or even avoid it at all and therefore
obtain an approximately admissible heuristic due
to the JS∆’s boundedness.
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4.2 Search Space Challenges

Given a longer text (one page or more), the num-
ber of potential operator applications is high. The
most direct way to expand a node is to generate a
successor with each applicable operator for each
occurrence of each selected n-gram, but this will
inevitably result in an immense number of very
similar states with identical costs and almost iden-
tical JS∆ change. I.e., the main challenge is to
find a sensible middle ground between accepting a
non-optimal solution too quickly or not finding a
solution at all. Recall that one can easily turn the
A* search into a depth-first or breadth-first search
by making successor generation too cheap or too
costly: depth-first search will always find a (non-
optimal) solution after a sufficient number of op-
erations, while breadth-first will never terminate
before running out of memory.

We can accept a near-optimal solution, so select-
ing one or two occurrences of an n-gram (instead
of all) will be sufficient. A potential problem is
that the applicability of a high-quality operator is
often restricted. However, one can increase the
application probability by selecting not only the
top-ranked n-gram but a small number of different
near-top n-grams. This way, we have multiple high-
impact n-grams with different contexts to work
with, and we increase the chances of applying the
operator opening alternative paths for the search. In
practice, JS∆ change is not a monotonic function
and steepest-ascent hill climbing does not guaran-
tee an overall lowest-cost path. Thus, we applied
each operator to two occurrences of the top ten
n-grams and selected from these (up to 140 succes-
sors) six randomly for expansion. However, even
with only six successors we still generate millions
of nodes very quickly and will eventually run out
of memory without finding a solution. Fortunately,
we can assume that exploring more neighbors will
not produce much better results after a while, so we
can restart the search from a few promising nodes
and still discard other open nodes.

4.3 Paraphrasing Operators

Our prototype employs the seven basic text opera-
tors shown in Table 2. These are to be understood
as a pilot study, more state-of-the-art text genera-
tion operators can be added easily. The most ver-
satile yet most disruptive basic modification are
(1) the removal of an n-gram, and (2) flipping two
of its (or adjacent) characters. Such operations

Operator name Cost value

(1) n-gram removal 40
(2) Character flips 30

Context-free synonyms 10
Context-free hypernyms 6
Context-dependent replacement 4
Character maps 3
Context-dependent deletion 2

Table 2: Implemented text operators and their assigned
step costs in our heuristic obfuscation prototype.

only are a last resort, and we hence set their costs
much higher than those of other operators. As
steps towards real paraphrasing, we also perform
context-free synonym and hypernym replacement
based on WordNet (Miller, 1995) as well as context-
dependent replacements and deletions using the
word 5-gram model of Netspeak (Stein et al., 2010).
Also, a map of similar punctuation characters indi-
cates inconspicuous character swaps.

5 Evaluation

To evaluate our approach, we report on: (1) an
efficiency comparison of greedy versus heuristic
obfuscation, (2) an effectiveness analysis against
well-known authorship verification approaches (un-
masking, compression-based models, and PAN par-
ticipants), as well as (3) a review and discussion of
an example obfuscated text.

Our experiments are based on PAN authorship
corpora and our new Webis Authorship Verifica-
tion Corpus 2019 of 262 authorship verification
cases (Bevendorff et al., 2019), half of them same-
author cases, the other half different-authors cases
(each a pair of texts of about 23,000 characters /
4,000 words). Instead of the more particular genres
studied at PAN, our new corpus contains longer
texts and more modern literature from Project
Gutenberg. We also took extra care to cleanse the
plain text, unified special characters, and removed
artifacts; in particular, we ensured that no author
appears in more than one case. The training-test
split is 70-30 so as to have a decent training portion.
The corpus is released alongside the code of our
search framework and other research data.

5.1 Search Over Greedy Obfuscation
Table 3 contrasts the efficiency of the greedy obfus-
cation with that of our heuristic search approach,
measured in terms of medians of total text opera-
tions and path costs. Heuristic search achieves a
decrease of operations of up to 19% for texts that
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Efficiency Cases Median

Subset # Greedy A* Gain

Total operations
all 41 148 145 −2 %

1+ ops 28 241 202 −16 %
100+ ops 21 291 236 −19 %

Path costs
all 41 5,960 1,968 −67 %

1+ ops 28 9,680 2,712 −72 %
100+ ops 21 11,680 2,935 −75 %

Table 3: Efficiency of greedy obfuscation vs heuristic
obfuscation for an obfuscation threshold of ε0.5.

Confidence Unobfuscated Obfuscated

Hyperplane Classified Effectiveness Classified Effectiveness
threshold cases [%] Prec. Rec. cases [%] Prec. Rec.

0.8 11.3 1.00 0.17 2.5 1.00 0.02
0.7 15.0 1.00 0.24 6.2 1.00 0.05
0.6 18.8 1.00 0.24 11.3 0.75 0.07
0.5 26.3 1.00 0.29 24.0 0.86 0.15
0.0 100.0 0.74 0.63 100.0 0.71 0.42

Table 4: Unmasking performance on our test data at
various confidence thresholds before and after obfusca-
tion. Recall treats unclassified cases as false negatives.

need at least 100 operations and an accumulated
path cost decrease of up to 75%. Since the greedy
obfuscation approach cannot choose among differ-
ent operators, it must rely on the most effective one
to achieve the obfuscation goal, incurring signifi-
cant path costs. Given that both obfuscators employ
adaptive thresholds, there are cases which do not
require any (or only little) obfuscation, whereas oth-
ers need more than 100. The latter are of particular
interest, since it is here where heuristic obfuscation
outperforms greedy obfuscation the most.

5.2 Obfuscation against Unmasking

One of today’s most effective and robust verifica-
tion approaches is unmasking by Koppel and Schler
(2004). It decomposes to-be-compared texts into
two chunk sets, and iteratively trains a linear classi-
fier to discriminate between them while removing
the most significant features in each iteration to
measure the increased reconstruction error. This
error increases faster for same-author cases since
those share more function words than do different-
authors cases. Fooling unmasking verification pro-
vides us with evidence that our obfuscation tech-
nique works at a deeper level than just the few
most superficial text features. Unmasking further
produces curve plots of the declining classification
accuracy, which render the effects of obfuscation
accessible to human inspection and interpretation.

Following Koppel and Schler, we use the chunk
frequencies of the 250 most common words as fea-
tures, determine classification accuracy by 10-fold
cross validation using an SVM classifier, and re-
move ten features per iteration. The final curves
and their gradients are used to train another SVM
to separate curves originating from same-author
cases from different-authors curves. Following the
example of the PAN competitions where the in-
centive was to classify only high-confidence cases,
we consider decisions for cases which can be clas-
sified with pre-determined confidence thresholds
(i.e., the distance to the hyperplane), which allows
to maximize precision at the cost of recall.

Table 4 contrasts the performance of unmasking
before and after obfuscation on the test data. With
increasing confidence thresholds, between 19 %
down to 11 % of the cases are decidable before
obfuscation, decreased by a factor of 2 to 4 after
obfuscation. On average, 205 trigrams were obfus-
cated; as little as about 3 % of a text.

5.3 Obfuscation against Compression Models
Another verification approach that differs from tra-
ditional feature-engineering are compression-based
models. We use the approach by Halvani et al.
(2017), who recommend the compression-based
cosine (CBC) by Sculley and Brodley (2006) cal-
culated on the text pairs after compression with the
PPMD algorithm (Howard, 1993).

Figure 2 shows CBC values on a random selec-
tion of 20 exemplary same-author cases from our
test dataset before and after obfuscation with the
decision threshold highlighted. Quite impressively,
almost none of the cases are classified correctly
anymore after obfuscation. Overall, the accuracy
drops from originally 71 % to 55 %, which is equiv-
alent to random guessing. This strong effect can be
explained as follows: Sculley and Brodley describe
their metrics in terms of the Kolmogorov complex-
ity, but the reason why natural language allows for
very good compression ratios is its predictability
(printed English has an entropy of at most 1.75 bits
per character (Brown et al., 1992)). PPMD uses
finite-order Markov language models for compres-
sion, which are effective at predicting characters
in a sentence, but sensitive to increased entropy,
which is the result of our obfuscation.

5.4 PAN Obfuscation Evaluation
We further conducted an extensive evaluation of our
obfuscation scheme against the top submissions to
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Figure 2: CBC values of 20 PPMD-compressed same-
author pairs before and after obfuscation up to the ob-
fuscation threshold ε0.7. The classification threshold by
which same-author and different-authors cases could
be distinguished is highlighted in the top portion.

the verification task at PAN 2013–2015 (Juola and
Stamatatos, 2013; Stamatatos et al., 2014, 2015).
The results are shown in Table 5. On all verifiers
tested, we achieve an average AUC and C@1 re-
duction of around 10 and 6 percentage points on
three of the corpora. With only minimal text modi-
fications, this puts us in second place on the PAN13
and PAN15 corpora, and fourth on PAN14 Essays
compared to other obfuscators submitted to PAN
(Hagen et al., 2017). The PAN14 Novels corpus
turns out to be the most challenging for our ap-
proach and there are multiple reasons for that. First,
the texts are significantly longer. This makes it dif-
ficult to assess the overall obfuscation with a global
measure like JS∆. As a result, only few sentences
were actually obfuscated with most of the text left
untouched. Insofar, we were surprised to see any
significant effect at all (best individual result: 13
percentage points). To make matters worse, the flat
search landscape spanned by our obfuscation op-
erators leads to an increasing number of reopened
states on these longer texts, greatly reducing the
efficiency of the heuristic search. This reveals an
important detail to explore in future work: obfus-
cation operations need to be distributed across the
whole text and progress needs to be measured on
smaller parts of it to ensure uniform obfuscation
of everything and avoid obfuscation “hot spots”.
Secondly, the number of “known” texts varies sub-
stantially, which demands more research into how
we can calculate a minimal yet sufficient JS∆@L
stopping criterion if a larger amount of known ma-
terial is available. Thirdly, the corpus consists pri-
marily of works by H. P. Lovecraft paired with fan
fiction, which incurs unforeseeable global corpus
features that verifiers can exploit, but which we do

not consider for obfuscation. Lastly, we identify
kocher15 as the most difficult verifier for us to ob-
fuscate. Employing an impostor approach on the
most frequent words, it was not the best-performing
verifier in the first place, but proves most resilient
against our “reductive” obfuscation, which tends
to obfuscate only n-grams that are already rare for
maximum effect. We expect that augmenting a re-
duction obfuscation with the previously-mentioned
extension strategy will yield better results and an
overall safer obfuscation.

5.5 Example of an Obfuscated Text
Assessing the text quality in tasks that involve gen-
eration, such as translation, paraphrasing, and sum-
marization, is still mostly manual work. Frequently
used measures like ROUGE cannot be applied in
the context of obfuscation, since our obfuscated
texts are up to 97 % identical to their unobfuscated
versions. This is why we resort to manually in-
specting obfuscated texts and the changes made.
Below is an excerpt of an original text along with
the obfuscations applied to it. Selected trigrams
are underlined, removed words are struck out, and
inserted words are highlighted:

’It was the only chance we hadw ehad
to win.’ Duke swallowed the idea
slowly. He couldn’t picture a
planetsatellite giving up its last

protection for aphi desperate effort
to end the war on purely offensive
drive. Three billion people watching
the home fleet take off,
knowingdeciding the skies were

openresort for all the hellmischief
that a savage enemy could send! On
Earth, the World Senate hadn’t
permitted the building of one
battleshipfrigate, for fear of
reprisal. [...]

Excerpt of Victory by Lester del Rey

We selected an example where, by chance, dif-
ferent operators were applied in close vicinity. This
“density” of operations is not representative. We
can see both high- and low-quality replacements
at work. Most can be attributed to the WordNet
synonym operator. The replacement of “a” with
“phi” is clearly such a case. The more suitable re-
placements originate from more context-dependent
replacements, whereas “we had”→ “w ehad” is a
result of the flip operator.

For comparison with related work, we carried
out a human assessment of a few random obfusca-
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Verifier Unobfuscated Obfuscated Difference

AUC C@1 FS AUC C@1 FS AUC C@1 FS

a) PAN13

bagnall15 0.86 0.79 0.68 0.74 0.64 0.48 0.11 0.15 0.20
castillojuarez14 0.49 0.43 0.21 0.50 0.53 0.27 -0.02 -0.10 -0.06
castro15 0.93 0.77 0.71 0.87 0.73 0.64 0.06 0.03 0.08
frery14 0.62 0.57 0.35 0.37 0.40 0.15 0.25 0.17 0.20
khonji14 0.86 0.76 0.65 0.70 0.60 0.42 0.16 0.16 0.23
kocher15 0.75 0.64 0.48 0.77 0.65 0.50 -0.02 -0.01 -0.02
layton14 0.62 0.67 0.41 0.47 0.53 0.25 0.15 0.13 0.16
mezaruiz14 0.75 0.65 0.49 0.57 0.53 0.30 0.18 0.12 0.19
mezaruiz15 0.73 0.71 0.52 0.50 0.53 0.26 0.24 0.18 0.26
modaresi14 0.50 0.50 0.25 0.47 0.50 0.24 0.03 0.00 0.02
moreau14 0.77 0.62 0.48 0.61 0.51 0.32 0.16 0.11 0.17
moreau15 0.71 0.47 0.33 0.60 0.47 0.28 0.12 0.00 0.05
singh14 0.39 0.33 0.13 0.44 0.43 0.19 -0.06 -0.10 -0.06
zamani14 0.75 0.70 0.53 0.71 0.70 0.50 0.05 0.00 0.03

Average 0.10 0.06 0.10

b) PAN14 Essays

bagnall15 0.57 0.55 0.31 0.43 0.45 0.19 0.14 0.10 0.12
castillojuarez14 0.55 0.58 0.32 0.55 0.58 0.32 0.00 0.00 0.00
castro15 0.62 0.59 0.36 0.51 0.53 0.27 0.11 0.05 0.09
frery14 0.72 0.71 0.51 0.68 0.68 0.46 0.04 0.03 0.05
khonji14 0.60 0.58 0.35 0.41 0.50 0.20 0.19 0.09 0.15
kocher15 0.63 0.59 0.37 0.61 0.57 0.35 0.02 0.02 0.02
layton14 0.59 0.61 0.36 0.51 0.53 0.27 0.08 0.08 0.09
mezaruiz14 0.57 0.56 0.32 0.49 0.51 0.25 0.08 0.04 0.07
mezaruiz15 0.52 0.52 0.27 0.32 0.37 0.12 0.21 0.16 0.16
modaresi14 0.60 0.58 0.35 0.57 0.57 0.32 0.04 0.01 0.03
moreau14 0.62 0.60 0.37 0.51 0.53 0.27 0.11 0.07 0.10
moreau15 0.57 0.52 0.30 0.50 0.51 0.26 0.07 0.01 0.04
singh14 0.70 0.66 0.46 0.61 0.61 0.37 0.09 0.04 0.08
zamani14 0.58 0.55 0.32 0.48 0.49 0.23 0.11 0.06 0.09

Average 0.09 0.05 0.08

Verifier Unobfuscated Obfuscated Difference

AUC C@1 FS AUC C@1 FS AUC C@1 FS

c) PAN14 Novels

bagnall15 0.68 0.68 0.47 0.61 0.59 0.36 0.07 0.09 0.10
castillojuarez14 0.63 0.62 0.39 0.59 0.56 0.33 0.04 0.05 0.06
castro15 0.64 0.51 0.33 0.50 0.39 0.19 0.14 0.12 0.13
frery14 0.61 0.59 0.36 0.59 0.57 0.34 0.02 0.02 0.02
khonji14 0.75 0.61 0.46 0.71 0.58 0.41 0.04 0.03 0.05
kocher15 0.63 0.57 0.36 0.66 0.59 0.39 -0.03 -0.02 -0.03
layton14 0.51 0.51 0.26 0.50 0.50 0.25 0.01 0.01 0.01
mezaruiz14 0.66 0.61 0.41 0.64 0.62 0.40 0.02 0.00 0.01
mezaruiz15 0.56 0.51 0.28 0.57 0.51 0.29 -0.01 0.00 0.00
modaresi14 0.71 0.72 0.51 0.69 0.69 0.47 0.02 0.03 0.03
moreau14 0.60 0.52 0.31 0.56 0.51 0.29 0.04 0.01 0.03
moreau15 0.64 0.50 0.32 0.61 0.53 0.32 0.03 -0.03 0.00
singh14 0.66 0.58 0.38 0.63 0.56 0.35 0.03 0.02 0.03
zamani14 0.73 0.65 0.48 0.71 0.63 0.44 0.03 0.02 0.03

Average 0.03 0.02 0.03

d) PAN15

bagnall15 0.81 0.76 0.61 0.72 0.71 0.51 0.09 0.05 0.10
castillojuarez14 0.64 0.64 0.41 0.55 0.55 0.30 0.09 0.09 0.11
castro15 0.75 0.69 0.52 0.72 0.68 0.49 0.03 0.01 0.03
frery14 0.54 0.46 0.25 0.47 0.43 0.20 0.07 0.04 0.05
khonji14 0.82 0.65 0.53 0.59 0.49 0.49 0.23 0.16 0.24
kocher15 0.74 0.69 0.51 0.72 0.66 0.48 0.02 0.02 0.03
layton14 0.67 0.50 0.34 0.49 0.50 0.25 0.18 0.00 0.09
mezaruiz14 0.65 0.61 0.40 0.55 0.54 0.30 0.10 0.07 0.10
mezaruiz15 0.74 0.69 0.51 0.55 0.53 0.29 0.19 0.16 0.22
modaresi14 0.40 0.41 0.16 0.39 0.40 0.16 0.01 0.00 0.00
moreau14 0.66 0.58 0.38 0.52 0.49 0.25 0.14 0.09 0.13
moreau15 0.71 0.64 0.45 0.52 0.49 0.26 0.19 0.15 0.20
singh14 0.78 0.50 0.39 0.66 0.50 0.33 0.12 0.00 0.06
zamani14 0.74 0.67 0.50 0.71 0.66 0.47 0.04 0.00 0.03

Average 0.11 0.06 0.10

Table 5: Results of the top verifiers of PAN 2013–2015 before and after obfuscating the four task corpora. FS (Fi-
nal Score) is the product of AUC and C@1. On average, we degrade AUC by at least 10 and C@1 by about
6 percentage points on three of the corpora, though much less on the PAN14 Novels corpus. Most noticeably, we
can reduce the FS of bagnall15 (winning submission of PAN 2015) by 10–20 percentage points on all four corpora.
The best obfuscation results on each corpus are marked bold. Verifiers that were improved are highlighted in red.

tion samples as per the PAN obfuscation task. We
achieved an overall grade of about 2.6 (1 = excel-
lent, 5 = fail), which places us somewhere within
the top three submissions.

While the obfuscated text probably is not fit for
publication, it does look promising even with our
basic set of paraphrasing operators. The text was
generated within a few minutes and passes the ver-
ifiers without being recognized as a same-author
case. Texts from other cases look similar: a mix-
ture of poor and good operations, where according
to our own review about half of the changes made
are still rather nonsensical. Since our set of opera-
tors is just a proof of concept, we will devise more
sophisticated ones and better weighting schemes in
future work, which is vital for achieving acceptable
text quality. Promising approaches already exist,
such as neural editing and paraphrasing (Grangier
and Auli, 2017; Guu et al., 2017).

6 Conclusion

We introduced a promising new paradigm for au-
thorship obfuscation and implemented a first fully
functional prototype. We identified and addressed
the following challenges: measuring style similar-
ity in a manner that is agnostic to state-of-the-art
verifiers, identifying those parts of a text that have
the highest impact on style, and devising and an-
alyzing a search heuristic amenable for informed
search. Our study opens up interesting avenues for
future research: obfuscation by addition instead
of by reduction, development of more powerful,
targeted paraphrasing operators, and, theoretical
analysis of the search space properties.

We consider heuristic search-based obfuscation
a key enabling technology that, combined with
tailored deep generative models for paraphrasing,
will yield better and stronger obfuscations.
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