@inproceedings{iyer-etal-2019-figurative,
title = "Figurative Usage Detection of Symptom Words to Improve Personal Health Mention Detection",
author = "Iyer, Adith and
Joshi, Aditya and
Karimi, Sarvnaz and
Sparks, Ross and
Paris, Cecile",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1108",
doi = "10.18653/v1/P19-1108",
pages = "1142--1147",
abstract = "Personal health mention detection deals with predicting whether or not a given sentence is a report of a health condition. Past work mentions errors in this prediction when symptom words, i.e., names of symptoms of interest, are used in a figurative sense. Therefore, we combine a state-of-the-art figurative usage detection with CNN-based personal health mention detection. To do so, we present two methods: a pipeline-based approach and a feature augmentation-based approach. The introduction of figurative usage detection results in an average improvement of 2.21{\%} F-score of personal health mention detection, in the case of the feature augmentation-based approach. This paper demonstrates the promise of using figurative usage detection to improve personal health mention detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iyer-etal-2019-figurative">
<titleInfo>
<title>Figurative Usage Detection of Symptom Words to Improve Personal Health Mention Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adith</namePart>
<namePart type="family">Iyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarvnaz</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ross</namePart>
<namePart type="family">Sparks</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecile</namePart>
<namePart type="family">Paris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Personal health mention detection deals with predicting whether or not a given sentence is a report of a health condition. Past work mentions errors in this prediction when symptom words, i.e., names of symptoms of interest, are used in a figurative sense. Therefore, we combine a state-of-the-art figurative usage detection with CNN-based personal health mention detection. To do so, we present two methods: a pipeline-based approach and a feature augmentation-based approach. The introduction of figurative usage detection results in an average improvement of 2.21% F-score of personal health mention detection, in the case of the feature augmentation-based approach. This paper demonstrates the promise of using figurative usage detection to improve personal health mention detection.</abstract>
<identifier type="citekey">iyer-etal-2019-figurative</identifier>
<identifier type="doi">10.18653/v1/P19-1108</identifier>
<location>
<url>https://aclanthology.org/P19-1108</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1142</start>
<end>1147</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Figurative Usage Detection of Symptom Words to Improve Personal Health Mention Detection
%A Iyer, Adith
%A Joshi, Aditya
%A Karimi, Sarvnaz
%A Sparks, Ross
%A Paris, Cecile
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F iyer-etal-2019-figurative
%X Personal health mention detection deals with predicting whether or not a given sentence is a report of a health condition. Past work mentions errors in this prediction when symptom words, i.e., names of symptoms of interest, are used in a figurative sense. Therefore, we combine a state-of-the-art figurative usage detection with CNN-based personal health mention detection. To do so, we present two methods: a pipeline-based approach and a feature augmentation-based approach. The introduction of figurative usage detection results in an average improvement of 2.21% F-score of personal health mention detection, in the case of the feature augmentation-based approach. This paper demonstrates the promise of using figurative usage detection to improve personal health mention detection.
%R 10.18653/v1/P19-1108
%U https://aclanthology.org/P19-1108
%U https://doi.org/10.18653/v1/P19-1108
%P 1142-1147
Markdown (Informal)
[Figurative Usage Detection of Symptom Words to Improve Personal Health Mention Detection](https://aclanthology.org/P19-1108) (Iyer et al., ACL 2019)
ACL