@inproceedings{shirani-etal-2019-learning,
title = "Learning Emphasis Selection for Written Text in Visual Media from Crowd-Sourced Label Distributions",
author = "Shirani, Amirreza and
Dernoncourt, Franck and
Asente, Paul and
Lipka, Nedim and
Kim, Seokhwan and
Echevarria, Jose and
Solorio, Thamar",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1112",
doi = "10.18653/v1/P19-1112",
pages = "1167--1172",
abstract = "In visual communication, text emphasis is used to increase the comprehension of written text to convey the author{'}s intent. We study the problem of emphasis selection, i.e. choosing candidates for emphasis in short written text, to enable automated design assistance in authoring. Without knowing the author{'}s intent and only considering the input text, multiple emphasis selections are valid. We propose a model that employs end-to-end label distribution learning (LDL) on crowd-sourced data and predicts a selection distribution, capturing the inter-subjectivity (common-sense) in the audience as well as the ambiguity of the input. We compare the model with several baselines in which the problem is transformed to single-label learning by mapping label distributions to absolute labels via majority voting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shirani-etal-2019-learning">
<titleInfo>
<title>Learning Emphasis Selection for Written Text in Visual Media from Crowd-Sourced Label Distributions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amirreza</namePart>
<namePart type="family">Shirani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Asente</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nedim</namePart>
<namePart type="family">Lipka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Echevarria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In visual communication, text emphasis is used to increase the comprehension of written text to convey the author’s intent. We study the problem of emphasis selection, i.e. choosing candidates for emphasis in short written text, to enable automated design assistance in authoring. Without knowing the author’s intent and only considering the input text, multiple emphasis selections are valid. We propose a model that employs end-to-end label distribution learning (LDL) on crowd-sourced data and predicts a selection distribution, capturing the inter-subjectivity (common-sense) in the audience as well as the ambiguity of the input. We compare the model with several baselines in which the problem is transformed to single-label learning by mapping label distributions to absolute labels via majority voting.</abstract>
<identifier type="citekey">shirani-etal-2019-learning</identifier>
<identifier type="doi">10.18653/v1/P19-1112</identifier>
<location>
<url>https://aclanthology.org/P19-1112</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1167</start>
<end>1172</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Emphasis Selection for Written Text in Visual Media from Crowd-Sourced Label Distributions
%A Shirani, Amirreza
%A Dernoncourt, Franck
%A Asente, Paul
%A Lipka, Nedim
%A Kim, Seokhwan
%A Echevarria, Jose
%A Solorio, Thamar
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F shirani-etal-2019-learning
%X In visual communication, text emphasis is used to increase the comprehension of written text to convey the author’s intent. We study the problem of emphasis selection, i.e. choosing candidates for emphasis in short written text, to enable automated design assistance in authoring. Without knowing the author’s intent and only considering the input text, multiple emphasis selections are valid. We propose a model that employs end-to-end label distribution learning (LDL) on crowd-sourced data and predicts a selection distribution, capturing the inter-subjectivity (common-sense) in the audience as well as the ambiguity of the input. We compare the model with several baselines in which the problem is transformed to single-label learning by mapping label distributions to absolute labels via majority voting.
%R 10.18653/v1/P19-1112
%U https://aclanthology.org/P19-1112
%U https://doi.org/10.18653/v1/P19-1112
%P 1167-1172
Markdown (Informal)
[Learning Emphasis Selection for Written Text in Visual Media from Crowd-Sourced Label Distributions](https://aclanthology.org/P19-1112) (Shirani et al., ACL 2019)
ACL