@inproceedings{wang-etal-2019-dynamically,
title = "Dynamically Composing Domain-Data Selection with Clean-Data Selection by {``}Co-Curricular Learning{''} for Neural Machine Translation",
author = "Wang, Wei and
Caswell, Isaac and
Chelba, Ciprian",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1123",
doi = "10.18653/v1/P19-1123",
pages = "1282--1292",
abstract = "Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a {``}co-curricular learning{''} method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the {``}co-curriculum{''}. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-dynamically">
<titleInfo>
<title>Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isaac</namePart>
<namePart type="family">Caswell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ciprian</namePart>
<namePart type="family">Chelba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a “co-curricular learning” method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the “co-curriculum”. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.</abstract>
<identifier type="citekey">wang-etal-2019-dynamically</identifier>
<identifier type="doi">10.18653/v1/P19-1123</identifier>
<location>
<url>https://aclanthology.org/P19-1123</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1282</start>
<end>1292</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation
%A Wang, Wei
%A Caswell, Isaac
%A Chelba, Ciprian
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wang-etal-2019-dynamically
%X Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a “co-curricular learning” method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the “co-curriculum”. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.
%R 10.18653/v1/P19-1123
%U https://aclanthology.org/P19-1123
%U https://doi.org/10.18653/v1/P19-1123
%P 1282-1292
Markdown (Informal)
[Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation](https://aclanthology.org/P19-1123) (Wang et al., ACL 2019)
ACL