@inproceedings{wang-etal-2019-dynamically,
    title = "Dynamically Composing Domain-Data Selection with Clean-Data Selection by ``Co-Curricular Learning'' for Neural Machine Translation",
    author = "Wang, Wei  and
      Caswell, Isaac  and
      Chelba, Ciprian",
    editor = "Korhonen, Anna  and
      Traum, David  and
      M{\`a}rquez, Llu{\'i}s",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1123/",
    doi = "10.18653/v1/P19-1123",
    pages = "1282--1292",
    abstract = "Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a ``co-curricular learning'' method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the ``co-curriculum''. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-dynamically">
    <titleInfo>
        <title>Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Wei</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Isaac</namePart>
        <namePart type="family">Caswell</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ciprian</namePart>
        <namePart type="family">Chelba</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Korhonen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Traum</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lluís</namePart>
            <namePart type="family">Màrquez</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a “co-curricular learning” method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the “co-curriculum”. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.</abstract>
    <identifier type="citekey">wang-etal-2019-dynamically</identifier>
    <identifier type="doi">10.18653/v1/P19-1123</identifier>
    <location>
        <url>https://aclanthology.org/P19-1123/</url>
    </location>
    <part>
        <date>2019-07</date>
        <extent unit="page">
            <start>1282</start>
            <end>1292</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation
%A Wang, Wei
%A Caswell, Isaac
%A Chelba, Ciprian
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wang-etal-2019-dynamically
%X Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a “co-curricular learning” method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the “co-curriculum”. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.
%R 10.18653/v1/P19-1123
%U https://aclanthology.org/P19-1123/
%U https://doi.org/10.18653/v1/P19-1123
%P 1282-1292
Markdown (Informal)
[Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation](https://aclanthology.org/P19-1123/) (Wang et al., ACL 2019)
ACL