@inproceedings{zhao-etal-2019-towards,
title = "Towards Scalable and Reliable Capsule Networks for Challenging {NLP} Applications",
author = "Zhao, Wei and
Peng, Haiyun and
Eger, Steffen and
Cambria, Erik and
Yang, Min",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1150",
doi = "10.18653/v1/P19-1150",
pages = "1549--1559",
abstract = "Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: (i) an agreement score to evaluate the performance of routing processes at instance-level; (ii) an adaptive optimizer to enhance the reliability of routing; (iii) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2019-towards">
<titleInfo>
<title>Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haiyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Eger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Cambria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: (i) an agreement score to evaluate the performance of routing processes at instance-level; (ii) an adaptive optimizer to enhance the reliability of routing; (iii) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.</abstract>
<identifier type="citekey">zhao-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/P19-1150</identifier>
<location>
<url>https://aclanthology.org/P19-1150</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1549</start>
<end>1559</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
%A Zhao, Wei
%A Peng, Haiyun
%A Eger, Steffen
%A Cambria, Erik
%A Yang, Min
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhao-etal-2019-towards
%X Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: (i) an agreement score to evaluate the performance of routing processes at instance-level; (ii) an adaptive optimizer to enhance the reliability of routing; (iii) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.
%R 10.18653/v1/P19-1150
%U https://aclanthology.org/P19-1150
%U https://doi.org/10.18653/v1/P19-1150
%P 1549-1559
Markdown (Informal)
[Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications](https://aclanthology.org/P19-1150) (Zhao et al., ACL 2019)
ACL