@inproceedings{park-etal-2019-soft,
title = "Soft Representation Learning for Sparse Transfer",
author = "Park, Haeju and
Yeo, Jinyoung and
Wang, Gengyu and
Hwang, Seung-won",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1151/",
doi = "10.18653/v1/P19-1151",
pages = "1560--1568",
abstract = "Transfer learning is effective for improving the performance of tasks that are related, and Multi-task learning (MTL) and Cross-lingual learning (CLL) are important instances. This paper argues that hard-parameter sharing, of hard-coding layers shared across different tasks or languages, cannot generalize well, when sharing with a loosely related task. Such case, which we call sparse transfer, might actually hurt performance, a phenomenon known as negative transfer. Our contribution is using adversarial training across tasks, to {\textquotedblleft}soft-code{\textquotedblright} shared and private spaces, to avoid the shared space gets too sparse. In CLL, our proposed architecture considers another challenge of dealing with low-quality input."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2019-soft">
<titleInfo>
<title>Soft Representation Learning for Sparse Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haeju</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyoung</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transfer learning is effective for improving the performance of tasks that are related, and Multi-task learning (MTL) and Cross-lingual learning (CLL) are important instances. This paper argues that hard-parameter sharing, of hard-coding layers shared across different tasks or languages, cannot generalize well, when sharing with a loosely related task. Such case, which we call sparse transfer, might actually hurt performance, a phenomenon known as negative transfer. Our contribution is using adversarial training across tasks, to “soft-code” shared and private spaces, to avoid the shared space gets too sparse. In CLL, our proposed architecture considers another challenge of dealing with low-quality input.</abstract>
<identifier type="citekey">park-etal-2019-soft</identifier>
<identifier type="doi">10.18653/v1/P19-1151</identifier>
<location>
<url>https://aclanthology.org/P19-1151/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1560</start>
<end>1568</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Soft Representation Learning for Sparse Transfer
%A Park, Haeju
%A Yeo, Jinyoung
%A Wang, Gengyu
%A Hwang, Seung-won
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F park-etal-2019-soft
%X Transfer learning is effective for improving the performance of tasks that are related, and Multi-task learning (MTL) and Cross-lingual learning (CLL) are important instances. This paper argues that hard-parameter sharing, of hard-coding layers shared across different tasks or languages, cannot generalize well, when sharing with a loosely related task. Such case, which we call sparse transfer, might actually hurt performance, a phenomenon known as negative transfer. Our contribution is using adversarial training across tasks, to “soft-code” shared and private spaces, to avoid the shared space gets too sparse. In CLL, our proposed architecture considers another challenge of dealing with low-quality input.
%R 10.18653/v1/P19-1151
%U https://aclanthology.org/P19-1151/
%U https://doi.org/10.18653/v1/P19-1151
%P 1560-1568
Markdown (Informal)
[Soft Representation Learning for Sparse Transfer](https://aclanthology.org/P19-1151/) (Park et al., ACL 2019)
ACL
- Haeju Park, Jinyoung Yeo, Gengyu Wang, and Seung-won Hwang. 2019. Soft Representation Learning for Sparse Transfer. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1560–1568, Florence, Italy. Association for Computational Linguistics.