@inproceedings{zmigrod-etal-2019-counterfactual,
title = "Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology",
author = "Zmigrod, Ran and
Mielke, Sabrina J. and
Wallach, Hanna and
Cotterell, Ryan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1161",
doi = "10.18653/v1/P19-1161",
pages = "1651--1661",
abstract = "Gender stereotypes are manifest in most of the world{'}s languages and are consequently propagated or amplified by NLP systems. Although research has focused on mitigating gender stereotypes in English, the approaches that are commonly employed produce ungrammatical sentences in morphologically rich languages. We present a novel approach for converting between masculine-inflected and feminine-inflected sentences in such languages. For Spanish and Hebrew, our approach achieves F1 scores of 82{\%} and 73{\%} at the level of tags and accuracies of 90{\%} and 87{\%} at the level of forms. By evaluating our approach using four different languages, we show that, on average, it reduces gender stereotyping by a factor of 2.5 without any sacrifice to grammaticality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zmigrod-etal-2019-counterfactual">
<titleInfo>
<title>Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Zmigrod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Mielke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanna</namePart>
<namePart type="family">Wallach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender stereotypes are manifest in most of the world’s languages and are consequently propagated or amplified by NLP systems. Although research has focused on mitigating gender stereotypes in English, the approaches that are commonly employed produce ungrammatical sentences in morphologically rich languages. We present a novel approach for converting between masculine-inflected and feminine-inflected sentences in such languages. For Spanish and Hebrew, our approach achieves F1 scores of 82% and 73% at the level of tags and accuracies of 90% and 87% at the level of forms. By evaluating our approach using four different languages, we show that, on average, it reduces gender stereotyping by a factor of 2.5 without any sacrifice to grammaticality.</abstract>
<identifier type="citekey">zmigrod-etal-2019-counterfactual</identifier>
<identifier type="doi">10.18653/v1/P19-1161</identifier>
<location>
<url>https://aclanthology.org/P19-1161</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1651</start>
<end>1661</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology
%A Zmigrod, Ran
%A Mielke, Sabrina J.
%A Wallach, Hanna
%A Cotterell, Ryan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zmigrod-etal-2019-counterfactual
%X Gender stereotypes are manifest in most of the world’s languages and are consequently propagated or amplified by NLP systems. Although research has focused on mitigating gender stereotypes in English, the approaches that are commonly employed produce ungrammatical sentences in morphologically rich languages. We present a novel approach for converting between masculine-inflected and feminine-inflected sentences in such languages. For Spanish and Hebrew, our approach achieves F1 scores of 82% and 73% at the level of tags and accuracies of 90% and 87% at the level of forms. By evaluating our approach using four different languages, we show that, on average, it reduces gender stereotyping by a factor of 2.5 without any sacrifice to grammaticality.
%R 10.18653/v1/P19-1161
%U https://aclanthology.org/P19-1161
%U https://doi.org/10.18653/v1/P19-1161
%P 1651-1661
Markdown (Informal)
[Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology](https://aclanthology.org/P19-1161) (Zmigrod et al., ACL 2019)
ACL