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Abstract

Word embeddings are often criticized for cap-
turing undesirable word associations such as
gender stereotypes. However, methods for
measuring and removing such biases remain
poorly understood. We show that for any em-
bedding model that implicitly does matrix fac-
torization, debiasing vectors post hoc using
subspace projection (Bolukbasi et al., 2016) is,
under certain conditions, equivalent to train-
ing on an unbiased corpus. We also prove
that WEAT, the most common association test
for word embeddings, systematically overesti-
mates bias. Given that the subspace projection
method is provably effective, we use it to de-
rive a new measure of association called the
relational inner product association (RIPA).
Experiments with RIPA reveal that, on aver-
age, skipgram with negative sampling (SGNS)
does not make most words any more gendered
than they are in the training corpus. However,
for gender-stereotyped words, SGNS actually
amplifies the gender association in the corpus.

1 Introduction

A common criticism of word embeddings is that
they capture undesirable associations in vector
space. In addition to gender-appropriate analo-
gies such as king:queen::man:woman, stereotyp-
ical analogies such as doctor:nurse::man:woman
also hold in SGNS embedding spaces (Bolukbasi
et al., 2016). Caliskan et al. (2017) created an
association test for word vectors called WEAT,
which uses cosine similarity to measure how as-
sociated words are with respect to two sets of at-
tribute words (e.g., ‘male’ vs. ‘female’). For ex-
ample, they claimed that science-related words
were significantly more associated with male at-
tributes and art-related words with female ones.
Since these associations are socially undesirable,
they were described as gender bias.

Despite these remarkable findings, such unde-
sirable word associations remain poorly under-
stood. For one, what causes them – is it biased
training data, the embedding model itself, or just
noise? Why should WEAT be the test of choice
for measuring associations in word embeddings?
Bolukbasi et al. (2016) found that word vectors
could be debiased by defining a “bias subspace”
in the embedding space and then subtracting from
each vector its projection on this subspace. But
what theoretical guarantee is there that this method
actually debiases vectors?

In this paper, we answer several of these open
questions. We begin by proving that for any em-
bedding model that implicitly does matrix fac-
torization (e.g., GloVe, SGNS), debiasing vectors
post hoc via subspace projection is, under certain
conditions, equivalent to training on an unbiased
corpus without reconstruction error. We find that
contrary to what Bolukbasi et al. (2016) suggested,
word embeddings should not be normalized before
debiasing, as vector length can contain important
information (Ethayarajh et al., 2018). To guaran-
tee unbiasedness, the bias subspace should also
be the span – rather than a principal component
– of the vectors used to define it. If applied this
way, the subspace projection method can be used
to provably debias SGNS and GloVe embeddings
with respect to the word pairs that define the bias
subspace.

Using this notion of a “bias subspace”, we then
prove that WEAT, the most common association
test for word embeddings, has theoretical flaws
that cause it to systematically overestimate bias.
At least for SGNS and GloVe, it implicitly requires
the two sets of attribute words (e.g., ‘male’ vs. ‘fe-
male’) to occur with equal frequency in the train-
ing corpus; when they do not, even gender-neutral
words can be classified as gender-biased, for ex-
ample. The outcome of a WEAT test can also
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be easily manipulated by contriving the attribute
word sets, allowing virtually any word – even a
gender-neutral one such as ‘door’ – to be classi-
fied as male- or female-biased relative to another
gender-neutral word.

Given that subspace projection removal prov-
ably debiases embeddings, we use it to derive
a new measure of association in word embed-
dings called the relational inner product associ-
ation (RIPA). Given a set of ordered word pairs
(e.g., {(‘man’, ‘woman’), (‘male’, ‘female’)}), we
take the first principal component of all the dif-
ference vectors, which we call the relation vector
~b. In Bolukbasi et al.’s terminology,~b would be a
one-dimensional bias subspace. Then, for a word
vector ~w, the relational inner product is simply
〈~w,~b〉. Because RIPA is intended for embedding
models that implicitly do matrix factorization, it
has an information theoretic interpretation. This
allows us to directly compare the actual word as-
sociation in embedding space with what we would
expect the word association to be, given the train-
ing corpus. Making such comparisons yields sev-
eral novel insights:

1. SGNS does not, on average, make the vast
majority of words any more gendered in the
vector space than they are in the training cor-
pus; individual words may be slightly more
or less gendered due to reconstruction er-
ror. However, for words that are gender-
stereotyped (e.g., ‘nurse’) or gender-specific
by definition (e.g., ‘queen’), SGNS amplifies
the gender association in the training corpus.

2. To use the subspace projection method, one
must have prior knowledge of which words
are gender-specific by definition, so that they
are not also debiased. Debiasing all vec-
tors can preclude gender-appropriate analo-
gies such as king:queen::man:woman from
holding in the embedding space. In con-
trast to the supervised method proposed by
Bolukbasi et al. (2016) for identifying these
gender-specific words, we introduce an unsu-
pervised method. Ours is much more effec-
tive at preserving gender-appropriate analo-
gies and precluding gender-biased ones.

To allow a fair comparison with prior work, our
experiments in this paper focus on gender associ-
ation. However, our claims extend to other types

of word associations as well, which we leave as
future work.

2 Related Work

Word Embeddings Word embedding models
generate distributed representations of words in a
low-dimensional continuous space. This is gener-
ally done using: (a) neural networks that learn em-
beddings by predicting the contexts words appear
in, or vice-versa (Bengio et al., 2003; Mikolov
et al., 2013; Collobert and Weston, 2008); (b)
low-rank approximations of word-context matri-
ces containing a co-occurrence statistic (Landauer
and Dumais, 1997; Levy and Goldberg, 2014).
The objective of SGNS is to maximize the prob-
ability of observed word-context pairs and to min-
imize the probability of k randomly sampled neg-
ative examples. Though no co-occurrence statis-
tics are explicitly calculated, Levy and Goldberg
(2014) proved that SGNS is implicitly factoriz-
ing a word-context PMI matrix shifted by − logk.
Similarly, GloVe implicitly factorizes a log co-
occurrence count matrix (Pennington et al., 2014).

Word Analogies A word analogy a:b::x:y as-
serts that “a is to b as x is to y” and holds in the
embedding space iff ~a+(~y−~x) =~b. Ethayarajh
et al. (2018) proved that for GloVe and SGNS,
a:b::x:y holds exactly in an embedding space with
no reconstruction error iff the words are coplanar
and the co-occurrence shifted PMI is the same for
each word pair and across both word pairs. Word
analogies are often used to signify that semantic
and syntactic properties of words (e.g., verb tense,
gender) can be captured as linear relations.

Measuring Associations Caliskan et al. (2017)
proposed what is now the most commonly used as-
sociation test for word embeddings. The word em-
bedding association test (WEAT) uses cosine sim-
ilarity to measure how associated two given sets
of target words are with respect to two sets of at-
tribute words (e.g., ‘male’ vs. ‘female’). For ex-
ample, Caliskan et al. (2017) claimed that science-
related words are more associated with ‘male’ than
‘female’ attributes compared to art-related words,
and that this was statistically significant. However,
aside from some intuitive results (e.g., that female
names are associated with female attributes), there
is little evidence that WEAT is a good measure of
association.
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Debiasing Embeddings Bolukbasi et al. (2016)
claimed that the existence of stereotypical analo-
gies such as doctor:nurse::man:woman consti-
tuted gender bias. To prevent such analogies from
holding in the vector space, they subtracted from
each biased word vector its projection on a “gen-
der bias subspace”. This subspace was defined
by the first m principal components for ten gen-
der relation vectors (e.g., ~man− ~woman). Each
debiased word vector was thus orthogonal to the
gender bias subspace and its projection on the sub-
space was zero. While this subspace projection
method precluded gender-biased analogies from
holding in the embedding space, Bolukbasi et al.
(2016) did not provide any theoretical guarantee
that the vectors were unbiased (i.e., equivalent to
vectors that would be obtained from training on a
gender-agnostic corpus with no reconstruction er-
ror). Other work has tried to learn gender-neutral
embeddings from scratch (Zhao et al., 2018), de-
spite this approach requiring custom changes to
the objective of each embedding model.

3 Provably Debiasing Embeddings

Experiments by Bolukbasi et al. (2016) found that
debiasing word embeddings using the subspace
projection method precludes gender-biased analo-
gies from holding. However, as we noted ear-
lier, despite this method being intuitive, there is no
theoretical guarantee that the debiased vectors are
perfectly unbiased or that the debiasing method
works for embedding models other than SGNS.
In this section, we prove that for any embedding
model that does implicit matrix factorization (e.g.,
GloVe, SGNS), debiasing embeddings post hoc
using the subspace projection method is, under
certain conditions, equivalent to training on a per-
fectly unbiased corpus without reconstruction er-
ror.

Definition 1 Let M denote the symmetric word-
context matrix for a given training corpus that is
implicitly or explicitly factorized by the embedding
model. Let S denote a set of word pairs. A word w
is unbiased with respect to S iff ∀(x,y) ∈ S,Mw,x =
Mw,y. M is unbiased with respect to S iff ∀w 6∈ S, w
is unbiased. A word w or matrix M is biased wrt S
iff it is not unbiased wrt S.

Note that Definition 1 does not make any dis-
tinction between socially acceptable and socially
unacceptable associations. A word that is gender-
specific by definition and a word that is gender-

biased due to stereotypes would both be consid-
ered biased by Definition 1, although only the lat-
ter is undesirable. For example, by Definition 1,
‘door’ would be unbiased with respect to the set
{(‘male’, ‘female’)} iff the entries for Mdoor,male
and Mdoor,female were interchangeable. The entire
corpus would be unbiased with respect to the set
iff Mw,male and Mw,female were interchangeable for
any word w. Since M is a word-context matrix
containing a co-occurrence statistic, unbiasedness
effectively means that the elements for (w, ‘male’)
and (w, ‘female’) in M can be switched without
any impact on the embeddings. M is factorized
into a word matrix W and context matrix C such
that WCT =M, with the former giving us our word
embeddings.

Debiasing Theorem For a set of word pairs S,
let the bias subspace B= span({~x−~y |(x,y)∈ S}).
For every word w 6∈ S, let ~wd , ~w− projB~w. The
reconstructed word-context matrix WdCT = Md is
unbiased with respect to S.

Proof of Theorem When there is no reconstruc-
tion error, we know from Definition 1 that a word
w is unbiased with respect to a set of word pairs S
iff ∀(x,y) ∈ S

Mw,x = Mw,y ⇐⇒ 〈~w,~xc〉= 〈~w,~yc〉
⇐⇒ 〈~w,~xc−~yc〉= 0

(1)

From Lemma 2 of Ethayarajh et al. (2018), we
also know that under perfect reconstruction, ∃ λ ∈
R,C = λW . For a detailed explanation, we refer
the reader to the proof of that lemma. In short, if
a linear word analogy holds over S (i.e., the word
pairs have the same difference vector), then there
exists a real symmetric matrix A that maps W to C.
A’s eigenvectors form a basis for the word space
but A can only have non-distinct eigenvalues if the
relative geometry of the word space is to be pre-
served. All word vectors must therefore lie in the
same eigenspace, with eigenvalue λ . This implies
that for any word w and any (x,y) ∈ S,

∃ λ ∈ R,〈~w,~xc−~yc〉= λ 〈~w,~x−~y〉 (2)

Each debiased word vector wd is orthogonal to the
bias subspace in the word embedding space, so
∀(x,y) ∈ S,〈~wd ,~x−~y〉 = 0. In conjunction with
(2), this implies that ∀(x,y) ∈ S,λ 〈~wd ,~x−~y〉 =
〈~wd ,~xc−~yc〉 = 0. This means that if a debiased
word w is represented with vector ~wd instead of
~w, it is unbiased with respect to S by Definition
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1. This implies that the co-occurrence matrix Md
that is reconstructed using the debiased word ma-
trix Wd is also unbiased with respect to S.

The subspace projection method is therefore far
more powerful than initially stated in Bolukbasi
et al. (2016): not only can it be applied to any em-
bedding model that implicitly does matrix factor-
ization (e.g., GloVe, SGNS), but debiasing word
vectors in this way is equivalent to training on a
perfectly unbiased corpus when there is no recon-
struction error. However, word vectors should not
be normalized prior to debiasing, since the matrix
that is factorized by the embedding model cannot
necessarily be reconstructed with normalized em-
beddings. Unbiasedness with respect to word pairs
S is also only guaranteed when the bias subspace
B = span({~x−~y|(x,y) ∈ S}).

Because we define unbiasedness with respect to
a set of word pairs, we cannot make any claims
about word pairs outside that set. For example,
consider the set S = {(‘man’, ‘woman’)}. If we
define a bias subspace using S and use it to de-
bias ~w, we can only say definitively that ~w is
unbiased with respect to S. We cannot claim,
for example, that ~w is also unbiased with re-
spect to {(‘policeman’, ‘policewoman’)}, because
it is possible that ~policewoman − ~policeman 6=

~woman− ~man. Debiasing ~w with respect to a non-
exhaustive set of gender-defining word pairs is not
equivalent to erasing all vestiges of gender from
~w. This may explain why it is still possible to clus-
ter words by gender after debiasing them using a
handful of gender-defining word pairs (Gonen and
Goldberg, 2019).

4 The Flaws of WEAT

Given attribute word sets X and Y (e.g., {‘male’,
‘man’} vs. {‘female’, ‘woman’}), WEAT uses a
cosine similarity-based measurement to capture
whether two target word sets have the same rela-
tive association to both sets of attribute words. At
the heart of WEAT is the statistic s(w,X ,Y ), which
"measures the association of [a word] w with the
attribute" (Caliskan et al., 2017):

s(w,X ,Y ) = EX cos(~w,~x)−EY cos(~w,~y) (3)

The normalized difference between the mean val-
ues of s(w,X ,Y ) across the two target word sets is
called the effect size. For the sake of simplicity, we
consider the case where both attribute word sets
contain a single word (i.e., X = {x},Y = {y}).

Proposition 1 Let X = {x},Y = {y}, and w be
unbiased with respect to {(x,y)} by Definition 1.
According to WEAT, an SGNS vector ~w is equally
associated with X and Y under perfect reconstruc-
tion iff p(x) = p(y).

Both theoretical and empirical work have found
the squared word embedding norm to be linear in
the log probability of the word. (Arora et al., 2016;
Ethayarajh et al., 2018). Where α1,α2 ∈ R, w is
then equally associated with X and Y if

0 = cos(~w,~x)− cos(~w,~y)

=
1
‖~w‖2

(
〈~w,~x〉
‖~x‖2

− 〈~w,~y〉
‖~y‖2

)
=

〈~w,~x〉√
α1 log p(x)+α2

− 〈~w,~y〉√
α1 log p(y)+α2

(4)

By the Debiasing Theorem, w is unbiased with re-
spect to the set {(x,y)} iff 〈~w,~x〉 = 〈~w,~y〉. There-
fore (4) holds iff p(x) = p(y). Thus for w to
be equally associated with both sets of attribute
words, not only must w be unbiased with respect
to {(x,y)} by Definition 1, but words x and y must
also occur with equal frequency in the corpus.
Despite this being implicitly required, it was not
stated as a requirement in Caliskan et al. (2017) for
using WEAT. If the embedding model were GloVe
instead of SGNS, this requirement would still ap-
ply, since GloVe implicitly factorizes a log co-
occurrence count matrix (Pennington et al., 2014)
while SGNS implicitly factorizes the shifted PMI
matrix (Levy and Goldberg, 2014).

This, in turn, means that the test statistic and
effect size of WEAT can be non-zero even when
each set of target words is unbiased with respect
to the attribute words. In practice, this issue often
goes unnoticed because each word in the attribute
set, at least for gender association, has a counter-
part that appears with roughly equal frequency in
most training corpora (e.g., ‘man’ vs. ‘woman’,
‘boy’ vs. ‘girl’). However, this is not guaranteed
to hold, especially for more nebulous attribute sets
(e.g., ‘pleasant’ vs. ‘unpleasant’ words).

Proposition 2 Let X = {x},Y = {y}, and the tar-
get word sets be T1 = {w1},T2 = {w2}. Regardless
of what the target words are, the effect size of their
association with X and Y is maximal in one direc-
tion, according to WEAT.

In this scenario, the effect size of the association
is 2 (i.e., the maximum) in one of the two direc-
tions: either w1 is more associated with X than Y ,
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Target Word Sets Attribute Word Sets Test Statistic Effect Size p-value Outcome (WEAT)

{masculine} vs. {feminine} 0.021 2.0 0.0 more male-associated
{door} vs. {curtain} {girlish} vs. {boyish} −0.042 −2.0 0.5 inconclusive

{woman} vs. {man} 0.071 2.0 0.0 more female-associated

{masculine} vs. {feminine} 0.063 2.0 0.0 more male-associated
{dog} vs. {cat} {actress} vs. {actor} −0.075 −2.0 0.5 inconclusive

{womanly} vs. {manly} 0.001 2.0 0.0 more female-associated

{masculine} vs. {feminine} 0.017 2.0 0.0 more male-associated
{bowtie} vs. {corsage} {woman} vs. {masculine} −0.071 −2.0 0.5 inconclusive

{girly} vs. {masculine} 0.054 2.0 0.0 more female-associated

Table 1: By contriving the male and female attribute words, we can easily manipulate WEAT to claim that a given
target word is more female-biased or male-biased than another. For example, in the top row, ~door is more male-
associated than ~curtain when the attribute words are ‘masculine’ and ‘feminine’, but it is more female-associated
when the attribute words are ‘woman’ and ‘man’. In both cases, the associations are highly statistically significant.

or w2 is. This is because the numerator of the ef-
fect size is the difference between s(w1,X ,Y ) and
s(w2,X ,Y ), while the denominator is the standard
deviation of {s(w,X ,Y )|w ∈ T1 ∪T2}, which sim-
plifies to

√
(s(w1,X ,Y )− s(w2,X ,Y ))2/4. This

means that the effect size is necessarily 2 in one
direction and −2 in the other; it is at its maximum
regardless of how small individual similarities are.

This also means that we can contrive the at-
tribute word sets to achieve a desired outcome. For
example, when the attribute word sets are {‘mas-
culine’} and {‘feminine’}, ~door is significantly
more male-associated than ~curtain. When the at-
tribute sets are {‘woman’} and {‘man’}, the op-
posite is true: ~door is significantly more female-
associated than ~curtain. In Table 1, we provide
more examples of how we can easily contrive the
attribute sets to claim, with high statistical signif-
icance, that a given target word is more female-
biased or male-biased than another. Conversely,
we can also manipulate the attribute sets to claim
that an association is not statistically significant
(p = 0.5), despite a large effect size.

Broadly speaking, cosine similarity is a useful
measure of vector similarity and hypothesis tests
are useful for testing sample differences. Because
of this, WEAT seems to be an intuitive measure.
However, as shown in Propositions 1 and 2, there
are two key theoretical flaws to WEAT that cause
it to overestimate the degree of association and ul-
timately make it an inappropriate metric for word
embeddings. The only other metric of note quanti-
fies association as |cos(~w,~b)|c, where~b is the bias
subspace and c ∈ R the “strictness” of the mea-
surement (Bolukbasi et al., 2016). For the same
reason discussed in Proposition 1, this measure
can also overestimate the degree of association.

5 Relational Inner Product Association

Given the theoretical flaws of WEAT, we derive a
new measure of word embedding association us-
ing the subspace projection method, which can
provably debias embeddings (section 3).

Definition 2 The relational inner product associ-
ation β (~w;~b) of a word vector ~w ∈V with respect
to a relation vector ~b ∈ V is 〈~w,~b〉. Where S is
a non-empty set of ordered word pairs (x,y) that
define the association,~b is the first principal com-
ponent of {~x−~y | (x,y) ∈ S}.

Our metric, the relational inner product associ-
ation (RIPA), is simply the inner product of a rela-
tion vector describing the association and a given
word vector in the same embedding space. To use
the terminology in Bolukbasi et al. (2016), RIPA is
the scalar projection of a word vector onto a one-
dimensional bias subspace defined by the unit vec-
tor~b. In their experiments, Bolukbasi et al. (2016)
defined~b as the first principal component for a set
of gender difference vectors (e.g., ~man− ~woman).
This would be the means of deriving~b for RIPA as
well.

For the sake of interpretability, we do not de-
fine~b as the span of difference vectors, as would
be required if one were using~b to provably debias
words with respect to S (see section 3). When~b is
a vector, the sign of 〈~w,~b〉 indicates the direction
of the association (e.g., male or female, depending
on the order of the word pairs). For higher dimen-
sional bias subspaces, the sign of the projection
cannot be interpreted in the same way. Also, as
noted earlier, bias vectors are what are typically
used to debias words in practice. As we show in
the rest of this section, the interpretability of RIPA,
its robustness to how the relation vector is defined,
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and its derivation from a method that provably de-
biases word embeddings are the key reasons why
it is an ideal replacement for WEAT. Given that
RIPA can be used for any embedding model that
does matrix factorization, it is applicable to com-
mon embedding models such as SGNS and GloVe.

5.1 Interpreting RIPA

If only a single word pair (x,y) defines the asso-
ciation, then the relation vector~b = (~x−~y)/‖~x−
~y‖, making RIPA highly interpretable. Given
that RIPA is intended for embedding models that
factorize a matrix M containing a co-occurrence
statistic (e.g., the shifted word-context PMI matrix
for SGNS), if we assume that there is no recon-
struction error, we can rewrite β (~w;~b) in terms of
M. Where x and y have context vectors ~xc and ~yc,
λ ∈ R is such that C = λW (see Lemma 2, Etha-
yarajh et al. (2018)), α ∈ R− is a model-specific
constant, and there is no reconstruction error:

βSGNS(~w;~b) =
(1/λ )〈~w,~xc−~yc〉

‖~x−~y‖

=
(1/λ )(PMI(x,w)−PMI(y,w))√

(1/λ )(−csPMI(x,y)+α)

=
1/
√

λ√
−csPMI(x,y)+α

log
p(w|x)
p(w|y)

(5)

Here, csPMI(x,y) , PMI(x,y)+ log p(x,y) and is
equal to −λ‖~x−~y‖2

2+α under perfect reconstruc-
tion (Ethayarajh et al., 2018). There are three no-
table features of this result:

1. Ethayarajh et al. (2018) proved the conjecture
by Pennington et al. (2014) that a word anal-
ogy holds over a set of words pairs (x,y) iff
for every word w, log[p(w|x)/p(w|y)] is the
same for every word pair (x,y). The expres-
sion in (5) is a multiple of this term.

2. Assuming no reconstruction error, if a lin-
ear word analogy holds over a set of ordered
word pairs (x,y), then the co-occurrence
shifted PMI (csPMI) should be the same for
every word pair (Ethayarajh et al., 2018). The
more x and y are unrelated, the closer that
csPMI(x,y) is to−∞ and β (~w;~b) is to 0. This
prevents RIPA from overestimating the extent
of the association simply because x and y are
far apart in embedding space.

3. Because~b is a unit vector, β (~w;~b) is bounded
in [−‖~w‖,‖~w‖]. This means that one can cal-
culate a word’s association with respect to
multiple relation vectors and then compare
the resulting RIPA values.

These points highlight just how robust RIPA is
to the definition of ~b. As long as a word anal-
ogy holds over the word pairs that define the as-
sociation – i.e., as long as the word pairs have
roughly the same difference vector – the choice
of word pair does not affect log[p(w|x)/p(w|y)]
or csPMI(x,y). Using (‘king’, ‘queen’) instead
of (‘man’, ‘woman’) to define the gender relation
vector, for example, would have a negligible im-
pact. In contrast, as shown in section 4, the lack of
robustness of WEAT to the choice of attribute sets
is one reason it is so unreliable.

We can also interpret β (~w;~b) for other embed-
ding models, not just SGNS. Where Xx,y denotes
the frequency of a word pair (x,y) and zx,zy de-
note the learned bias terms for GloVe:

βGloVe(~w;~b) =C
(

log
p(x,w)
p(y,w)

− zx + zy

)
where C =

1/
√

λ√
−csPMI(x,y)+α

(6)

Because the terms zx,zy are learned, β (~w;~b) is not
as interpretable for GloVe. However, Levy et al.
(2015) have conjectured that, in practice, zx,zy

may be equivalent to the log counts of x and y re-
spectively, in which case βGloVe = βSGNS.

5.2 Statistical Significance
Unlike with WEAT, there is no notion of statistical
significance attached to RIPA. There is a simple
reason for this. Whether a word vector ~w is spuri-
ously or non-spuriously associated with respect to
a relation vector (~x−~y)/‖~x−~y‖ depends on how
frequently (w,x) and (w,y) co-occur in the train-
ing corpus; the more co-occurrences there are, the
less likely the association is spurious. As shown
in experiments by Ethayarajh et al. (2018), the
reconstruction error for any word pair (x,y) fol-
lows a zero-centered normal distribution where the
variance is a decreasing function of Xx,y. Word
embeddings alone are thus not enough to ascribe
a statistical significance to the association. This
also suggests that the notion of statistical signifi-
cance in WEAT is disingenuous, as it ignores how
the spuriousness of an association depends on co-
occurrence frequency in the training corpus.
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Word Type Word Genderedness in Corpus Genderedness in Embedding Space Change (abs.)

mom −0.163 −0.648 0.485
dad 0.125 0.217 0.092

Gender-Appropriate queen −0.365 −0.826 0.462
(n = 164) king 0.058 0.200 0.142

Avg (abs.) 0.231 0.522 0.291

nurse −0.190 −1.047 0.858
doctor −0.135 −0.059 −0.077

Gender-Biased housekeeper −0.132 −0.927 0.795
(n = 68) architect −0.063 0.162 0.099

Avg (abs.) 0.253 0.450 0.197

ballpark 0.254 0.050 −0.204
calf −0.039 0.027 −0.012

Gender-Neutral hormonal −0.326 −0.551 0.225
(n = 200) speed 0.036 −0.005 −0.031

Avg (abs.) 0.125 0.119 −0.006

Table 2: On average, SGNS makes gender-appropriate words (e.g., ‘queen’) and gender-biased words (e.g., ‘nurse’)
more gendered in the embedding space than they are in the training corpus. As seen in the last column (in bold), the
average change in absolute genderedness is 0.291 and 0.197 respectively (p < 0.001 for both). For gender-neutral
words, the average change is only −0.006 (p = 0.84): SGNS does not make them any more gendered.

6 Experiments

With our experiments, we address two open ques-
tions. For one, how much of the gender associa-
tion in an embedding space is due to the embed-
ding model itself, how much is due to the train-
ing corpus, and how much is just noise? Sec-
ondly, how can we debias gender-biased words
(e.g., ‘doctor’, ‘nurse’) but not gender-appropriate
ones (e.g., ‘king’, ‘queen’) without a priori knowl-
edge of which words belong in which category?

6.1 Setup

For our experiments, we use SGNS embeddings
trained on Wikipedia, since RIPA is highly inter-
pretable for SGNS (see section 5.1). This means
that for any given word in the vocabulary, we can
compare its gender association in the training cor-
pus to its gender association in the embedding
space, which should be equal under perfect recon-
struction. Words are grouped into three categories
with respect to gender: biased, appropriate, and
neutral. We create lists of biased and appropri-
ate words using the Bolukbasi et al. (2016) lists
of gender-biased and gender-appropriate analo-
gies. For example, doctor:nurse::man:woman is
biased, so we classify the first two words as biased.
The last category, neutral, contains uniformly ran-
domly sampled words that appear at least 10K
times in the corpus and that are not in either of the
other categories, and which we therefore expect to
be gender-agnostic.

6.2 Breaking down Gender Association
For any given word, the gender association in the
training corpus is what the gender association in
the embedding space would be if there were no re-
construction error. By comparing these two quan-
tities, we can infer the change induced by the em-
bedding model. Let g(w;x,y) denote the RIPA of
a word w with respect to the gender relation vec-
tor defined by word pair (x,y), let ĝ(w;x,y) denote
what g(w;x,y) would be under perfect reconstruc-
tion for an SGNS embedding model, and let ∆g

denote the change in absolute gender association
from corpus to embedding space. Where S is a
set of gender-defining word pairs1 from Bolukbasi
et al. (2016) and λ ,α are the model-specific con-
stants defined in section 5.1,

g(w;x,y) =
〈~w,~x−~y〉
‖~x−~y‖

ĝ(w;x,y) =
1/
√

λ√
−csPMI(x,y)+α

log
p(w|x)
p(w|y)

∆g(w;S) =

∣∣∣∣∣ ∑
(x,y)∈S

g(w;x,y)
|S|

∣∣∣∣∣−
∣∣∣∣∣ ∑
(x,y)∈S

ĝ(w;x,y)
|S|

∣∣∣∣∣
(7)

We take the absolute value of each term because
the embedding model may make a word more gen-
dered, but in the direction opposite of what is im-
plied in the corpus. λ ← 1 because we expect

1 The set of gender-defining pairs we used is {(‘woman’,
‘man’), (‘girl’, ‘boy’), (‘she’, ‘he’), (‘mother’, ‘father’),
(‘daughter’, ‘son’), (‘gal’, ‘guy’), (‘female’, ‘male’), (‘her’,
‘his’), (‘herself’, ‘himself’), (‘mary’, ‘john’)}.
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Figure 1: Before debiasing words using subspace projection, one needs to identify which words are gender-
appropriate – to avoid debiasing them. The Bolukbasi et al. (2016) method of identifying these words is ineffective:
it ends up precluding most gender-appropriate analogies (dotted line, left) while preserving most gender-biased
analogies (dotted line, right). Our unsupervised method (dashed line) does much better in both respects.

λ ≈ 1 in practice (Ethayarajh et al., 2018; Mimno
and Thompson, 2017). Similarly, α ← −1 be-
cause it minimizes the difference between ‖~x−~y‖
and its information theoretic interpretation over
the gender-defining word pairs in S, though this is
an estimate and may differ from the true value of
α . In Table 2, we list the gender association in the
training corpus (g(w)), the gender association in
embedding space (ĝ(w)), and the absolute change
(∆g(w)) for each group of words.

On average, the SGNS embedding model does
not make gender-neutral words any more gendered
than they are in the training corpus. Given that
much of the vocabulary falls into this category, this
means that the embedding model does not system-
atically change the genderedness of most words.
However, because of reconstruction error, individ-
ual words may be more or less gendered in the em-
bedding space, simply due to chance. In contrast,
for words that are either gender-biased or gender-
appropriate, on average, the embedding model ac-
tually amplifies the gender association in the cor-
pus. For example, for the word ‘king’, which
is gender-specific by definition, the association is
0.058 in the corpus and 0.200 in the embedding
space – it becomes more male-associated. For
the word ‘nurse’, which is gender-biased, the as-
sociation is −0.190 in the corpus and −1.047 in
the embedding space – it becomes more female-
associated. On average, the amplification is much
greater for gender-appropriate words than it is for
gender-biased ones, although the latter are more
gendered in the corpus itself. In both cases, the

change in absolute genderedness is statistically
significant (p < 0.001).

This amplification effect is unsurprising and
can be explained by second-order similarity. Two
words can be nearby in a word embedding space
if they co-occur frequently in the training corpus
(first-order similarity) or if there exists a large set
of context words with which they both frequently
co-occur (second-order similarity). The latter ex-
plains why words like ‘Toronto’ and ‘Melbourne’
are close to each other in embedding space; both
are cities that appear in similar contexts. In an
environment with some reconstruction error, such
as low-dimensional embedding spaces, second-
order similarity permits words to be closer in em-
bedding space than would be the case if only
first-order similarity had an effect. As a result,
λ 〈 ~king, ~man〉 > (PMI(‘king’, ‘man’)− logk) for
SGNS, for example. What is often treated as a use-
ful property of word embeddings can have, with
respect to gender bias, a pernicious effect.

6.3 Debiasing without Supervision

To use the subspace projection method (Boluk-
basi et al., 2016), one must have prior knowl-
edge of which words are gender-appropriate, so
that they are not debiased. Debiasing all vectors
can preclude gender-appropriate analogies such as
king:queen::man:woman from holding in the em-
bedding space. To create an exhaustive list of
gender-appropriate words, Bolukbasi et al. (2016)
started with a small, human-labelled set of words
and then trained an SVM to predict more gender-
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appropriate terms in the vocabulary. This boot-
strapped list of gender-appropriate words was then
left out during debiasing.

The way in which Bolukbasi et al. (2016) eval-
uated their method is unorthodox: they tested the
ability of their debiased embedding space to gen-
erate new analogies. However, this does not cap-
ture whether gender-appropriate analogies are suc-
cessfully preserved and gender-biased analogies
successfully precluded. In Figure 1, we show how
the number of appropriate and biased analogies
changes after debiasing. The x-axis captures how
strongly gendered the analogy is, using the ab-
solute RIPA value |β (~w;~b)| but replacing ~w with
the difference vector defined by the first word pair
(e.g., ~king− ~queen). The y-axis captures the num-
ber of analogies that meet that threshold.

As seen in Figure 1, Bolukbasi et al.’s boot-
strapped list of gender-appropriate words yields
the opposite of what is intended: it ends up
precluding most gender-appropriate analogies and
preserving most gender-biased ones. This is not
the fault of the debiasing method; rather, it is the
result of failing to correctly identify which words
in the vocabulary are gender-appropriate. For ex-
ample, the bootstrapped list2 includes ‘wolf_cub’
and ‘Au_Lait’ as gender-appropriate terms, even
though they are not. Conversely, it fails to include
common gender-appropriate words such as ‘god-
father’. This problem highlights how finding the
right words to debias is as important as the debias-
ing itself.

We propose an unsupervised method for find-
ing gender-appropriate words. We first create a
gender-defining relation vector ~b∗ by taking the
first principal component of gender-defining dif-
ference vectors such as ~man− ~woman. Using dif-
ference vectors from biased analogies, such as
~doctor− ~midwife, we then create a bias-defining

relation vector~b′ the same way. We then debias a
word w using the subspace projection method iff
it satisfies |β (~w;~b∗)|< |β (~w;~b′)|. As seen in Fig-
ure 1, this simple condition is sufficient to preserve
almost all gender-appropriate analogies while pre-
cluding most gender-biased ones.

In our debiased embedding space, 94.9% of
gender-appropriate analogies with a strength of at
least 0.5 are preserved in the embedding space
while only 36.7% of gender-biased analogies are.
In contrast, the Bolukbasi et al. (2016) approach

2Available at https://github.com/tolga-b/debiaswe

preserves only 16.5% of appropriate analogies
with a strength of at least 0.5 while preserving
80.0% of biased ones. Recall that we use the same
debiasing method as Bolukbasi et al. (2016); the
difference in performance can only be ascribed
to how we choose the gender-appropriate words.
Combining our heuristic with other methods may
yield even better results, which we leave as future
work.

7 Conclusion

In this paper, we answered several open ques-
tions about undesirable word associations in em-
bedding spaces. We found that for any embed-
ding model that implicitly does matrix factoriza-
tion (e.g., SGNS, GloVe), debiasing with the sub-
space projection method is, under certain condi-
tions, equivalent to training on a corpus that is un-
biased with respect to the words defining the bias
subspace. We proved that WEAT, the most com-
mon test of word embedding association, has the-
oretical flaws that cause it to systematically over-
estimate bias. For example, by contriving the
attribute sets for WEAT, virtually any word can
be classified as gender-biased relative to another.
We then derived a new measure of association in
word embeddings called the relational inner prod-
uct association (RIPA). Using RIPA, we found that
SGNS does not, on average, make most words any
more gendered in the embedding space than they
are in the training corpus. However, for words that
are gender-biased or gender-specific by definition,
SGNS amplifies the genderedness in the corpus.
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