@inproceedings{salesky-etal-2019-exploring,
title = "Exploring Phoneme-Level Speech Representations for End-to-End Speech Translation",
author = "Salesky, Elizabeth and
Sperber, Matthias and
Black, Alan W",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1179/",
doi = "10.18653/v1/P19-1179",
pages = "1835--1841",
abstract = "Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representations is far more effective and efficient for translation than traditional frame-level speech features. Specifically, we generate phoneme labels for speech frames and average consecutive frames with the same label to create shorter, higher-level source sequences for translation. We see improvements of up to 5 BLEU on both our high and low resource language pairs, with a reduction in training time of 60{\%}. Our improvements hold across multiple data sizes and two language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="salesky-etal-2019-exploring">
<titleInfo>
<title>Exploring Phoneme-Level Speech Representations for End-to-End Speech Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Sperber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Black</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representations is far more effective and efficient for translation than traditional frame-level speech features. Specifically, we generate phoneme labels for speech frames and average consecutive frames with the same label to create shorter, higher-level source sequences for translation. We see improvements of up to 5 BLEU on both our high and low resource language pairs, with a reduction in training time of 60%. Our improvements hold across multiple data sizes and two language pairs.</abstract>
<identifier type="citekey">salesky-etal-2019-exploring</identifier>
<identifier type="doi">10.18653/v1/P19-1179</identifier>
<location>
<url>https://aclanthology.org/P19-1179/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1835</start>
<end>1841</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Phoneme-Level Speech Representations for End-to-End Speech Translation
%A Salesky, Elizabeth
%A Sperber, Matthias
%A Black, Alan W.
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F salesky-etal-2019-exploring
%X Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representations is far more effective and efficient for translation than traditional frame-level speech features. Specifically, we generate phoneme labels for speech frames and average consecutive frames with the same label to create shorter, higher-level source sequences for translation. We see improvements of up to 5 BLEU on both our high and low resource language pairs, with a reduction in training time of 60%. Our improvements hold across multiple data sizes and two language pairs.
%R 10.18653/v1/P19-1179
%U https://aclanthology.org/P19-1179/
%U https://doi.org/10.18653/v1/P19-1179
%P 1835-1841
Markdown (Informal)
[Exploring Phoneme-Level Speech Representations for End-to-End Speech Translation](https://aclanthology.org/P19-1179/) (Salesky et al., ACL 2019)
ACL