@inproceedings{surya-etal-2019-unsupervised,
title = "Unsupervised Neural Text Simplification",
author = "Surya, Sai and
Mishra, Abhijit and
Laha, Anirban and
Jain, Parag and
Sankaranarayanan, Karthik",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1198/",
doi = "10.18653/v1/P19-1198",
pages = "2058--2068",
abstract = "The paper presents a first attempt towards unsupervised neural text simplification that relies only on unlabeled text corpora. The core framework is composed of a shared encoder and a pair of attentional-decoders, crucially assisted by discrimination-based losses and denoising. The framework is trained using unlabeled text collected from en-Wikipedia dump. Our analysis (both quantitative and qualitative involving human evaluators) on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic levels, competitive to existing supervised methods. It also outperforms viable unsupervised baselines. Adding a few labeled pairs helps improve the performance further."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="surya-etal-2019-unsupervised">
<titleInfo>
<title>Unsupervised Neural Text Simplification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="family">Surya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhijit</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anirban</namePart>
<namePart type="family">Laha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Sankaranarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents a first attempt towards unsupervised neural text simplification that relies only on unlabeled text corpora. The core framework is composed of a shared encoder and a pair of attentional-decoders, crucially assisted by discrimination-based losses and denoising. The framework is trained using unlabeled text collected from en-Wikipedia dump. Our analysis (both quantitative and qualitative involving human evaluators) on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic levels, competitive to existing supervised methods. It also outperforms viable unsupervised baselines. Adding a few labeled pairs helps improve the performance further.</abstract>
<identifier type="citekey">surya-etal-2019-unsupervised</identifier>
<identifier type="doi">10.18653/v1/P19-1198</identifier>
<location>
<url>https://aclanthology.org/P19-1198/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2058</start>
<end>2068</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Neural Text Simplification
%A Surya, Sai
%A Mishra, Abhijit
%A Laha, Anirban
%A Jain, Parag
%A Sankaranarayanan, Karthik
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F surya-etal-2019-unsupervised
%X The paper presents a first attempt towards unsupervised neural text simplification that relies only on unlabeled text corpora. The core framework is composed of a shared encoder and a pair of attentional-decoders, crucially assisted by discrimination-based losses and denoising. The framework is trained using unlabeled text collected from en-Wikipedia dump. Our analysis (both quantitative and qualitative involving human evaluators) on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic levels, competitive to existing supervised methods. It also outperforms viable unsupervised baselines. Adding a few labeled pairs helps improve the performance further.
%R 10.18653/v1/P19-1198
%U https://aclanthology.org/P19-1198/
%U https://doi.org/10.18653/v1/P19-1198
%P 2058-2068
Markdown (Informal)
[Unsupervised Neural Text Simplification](https://aclanthology.org/P19-1198/) (Surya et al., ACL 2019)
ACL
- Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain, and Karthik Sankaranarayanan. 2019. Unsupervised Neural Text Simplification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2058–2068, Florence, Italy. Association for Computational Linguistics.