@inproceedings{chung-etal-2019-conan,
title = "{CONAN} - {CO}unter {NA}rratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech",
author = "Chung, Yi-Ling and
Kuzmenko, Elizaveta and
Tekiroglu, Serra Sinem and
Guerini, Marco",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1271/",
doi = "10.18653/v1/P19-1271",
pages = "2819--2829",
abstract = "Although there is an unprecedented effort to provide adequate responses in terms of laws and policies to hate content on social media platforms, dealing with hatred online is still a tough problem. Tackling hate speech in the standard way of content deletion or user suspension may be charged with censorship and overblocking. One alternate strategy, that has received little attention so far by the research community, is to actually oppose hate content with counter-narratives (i.e. informed textual responses). In this paper, we describe the creation of the first large-scale, multilingual, expert-based dataset of hate-speech/counter-narrative pairs. This dataset has been built with the effort of more than 100 operators from three different NGOs that applied their training and expertise to the task. Together with the collected data we also provide additional annotations about expert demographics, hate and response type, and data augmentation through translation and paraphrasing. Finally, we provide initial experiments to assess the quality of our data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chung-etal-2019-conan">
<titleInfo>
<title>CONAN - COunter NArratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi-Ling</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizaveta</namePart>
<namePart type="family">Kuzmenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serra</namePart>
<namePart type="given">Sinem</namePart>
<namePart type="family">Tekiroglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Guerini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although there is an unprecedented effort to provide adequate responses in terms of laws and policies to hate content on social media platforms, dealing with hatred online is still a tough problem. Tackling hate speech in the standard way of content deletion or user suspension may be charged with censorship and overblocking. One alternate strategy, that has received little attention so far by the research community, is to actually oppose hate content with counter-narratives (i.e. informed textual responses). In this paper, we describe the creation of the first large-scale, multilingual, expert-based dataset of hate-speech/counter-narrative pairs. This dataset has been built with the effort of more than 100 operators from three different NGOs that applied their training and expertise to the task. Together with the collected data we also provide additional annotations about expert demographics, hate and response type, and data augmentation through translation and paraphrasing. Finally, we provide initial experiments to assess the quality of our data.</abstract>
<identifier type="citekey">chung-etal-2019-conan</identifier>
<identifier type="doi">10.18653/v1/P19-1271</identifier>
<location>
<url>https://aclanthology.org/P19-1271/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2819</start>
<end>2829</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CONAN - COunter NArratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech
%A Chung, Yi-Ling
%A Kuzmenko, Elizaveta
%A Tekiroglu, Serra Sinem
%A Guerini, Marco
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F chung-etal-2019-conan
%X Although there is an unprecedented effort to provide adequate responses in terms of laws and policies to hate content on social media platforms, dealing with hatred online is still a tough problem. Tackling hate speech in the standard way of content deletion or user suspension may be charged with censorship and overblocking. One alternate strategy, that has received little attention so far by the research community, is to actually oppose hate content with counter-narratives (i.e. informed textual responses). In this paper, we describe the creation of the first large-scale, multilingual, expert-based dataset of hate-speech/counter-narrative pairs. This dataset has been built with the effort of more than 100 operators from three different NGOs that applied their training and expertise to the task. Together with the collected data we also provide additional annotations about expert demographics, hate and response type, and data augmentation through translation and paraphrasing. Finally, we provide initial experiments to assess the quality of our data.
%R 10.18653/v1/P19-1271
%U https://aclanthology.org/P19-1271/
%U https://doi.org/10.18653/v1/P19-1271
%P 2819-2829
Markdown (Informal)
[CONAN - COunter NArratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech](https://aclanthology.org/P19-1271/) (Chung et al., ACL 2019)
ACL