@inproceedings{oprea-magdy-2019-exploring,
title = "Exploring Author Context for Detecting Intended vs Perceived Sarcasm",
author = "Oprea, Silviu and
Magdy, Walid",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1275/",
doi = "10.18653/v1/P19-1275",
pages = "2854--2859",
abstract = "We investigate the impact of using author context on textual sarcasm detection. We define author context as the embedded representation of their historical posts on Twitter and suggest neural models that extract these representations. We experiment with two tweet datasets, one labelled manually for sarcasm, and the other via tag-based distant supervision. We achieve state-of-the-art performance on the second dataset, but not on the one labelled manually, indicating a difference between intended sarcasm, captured by distant supervision, and perceived sarcasm, captured by manual labelling."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oprea-magdy-2019-exploring">
<titleInfo>
<title>Exploring Author Context for Detecting Intended vs Perceived Sarcasm</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silviu</namePart>
<namePart type="family">Oprea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walid</namePart>
<namePart type="family">Magdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the impact of using author context on textual sarcasm detection. We define author context as the embedded representation of their historical posts on Twitter and suggest neural models that extract these representations. We experiment with two tweet datasets, one labelled manually for sarcasm, and the other via tag-based distant supervision. We achieve state-of-the-art performance on the second dataset, but not on the one labelled manually, indicating a difference between intended sarcasm, captured by distant supervision, and perceived sarcasm, captured by manual labelling.</abstract>
<identifier type="citekey">oprea-magdy-2019-exploring</identifier>
<identifier type="doi">10.18653/v1/P19-1275</identifier>
<location>
<url>https://aclanthology.org/P19-1275/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2854</start>
<end>2859</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Author Context for Detecting Intended vs Perceived Sarcasm
%A Oprea, Silviu
%A Magdy, Walid
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F oprea-magdy-2019-exploring
%X We investigate the impact of using author context on textual sarcasm detection. We define author context as the embedded representation of their historical posts on Twitter and suggest neural models that extract these representations. We experiment with two tweet datasets, one labelled manually for sarcasm, and the other via tag-based distant supervision. We achieve state-of-the-art performance on the second dataset, but not on the one labelled manually, indicating a difference between intended sarcasm, captured by distant supervision, and perceived sarcasm, captured by manual labelling.
%R 10.18653/v1/P19-1275
%U https://aclanthology.org/P19-1275/
%U https://doi.org/10.18653/v1/P19-1275
%P 2854-2859
Markdown (Informal)
[Exploring Author Context for Detecting Intended vs Perceived Sarcasm](https://aclanthology.org/P19-1275/) (Oprea & Magdy, ACL 2019)
ACL