@inproceedings{vashishtha-etal-2019-fine,
title = "Fine-Grained Temporal Relation Extraction",
author = "Vashishtha, Siddharth and
Van Durme, Benjamin and
White, Aaron Steven",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1280",
doi = "10.18653/v1/P19-1280",
pages = "2906--2919",
abstract = "We present a novel semantic framework for modeling temporal relations and event durations that maps pairs of events to real-valued scales. We use this framework to construct the largest temporal relations dataset to date, covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to train models for jointly predicting fine-grained temporal relations and event durations. We report strong results on our data and show the efficacy of a transfer-learning approach for predicting categorical relations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vashishtha-etal-2019-fine">
<titleInfo>
<title>Fine-Grained Temporal Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Vashishtha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel semantic framework for modeling temporal relations and event durations that maps pairs of events to real-valued scales. We use this framework to construct the largest temporal relations dataset to date, covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to train models for jointly predicting fine-grained temporal relations and event durations. We report strong results on our data and show the efficacy of a transfer-learning approach for predicting categorical relations.</abstract>
<identifier type="citekey">vashishtha-etal-2019-fine</identifier>
<identifier type="doi">10.18653/v1/P19-1280</identifier>
<location>
<url>https://aclanthology.org/P19-1280</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2906</start>
<end>2919</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-Grained Temporal Relation Extraction
%A Vashishtha, Siddharth
%A Van Durme, Benjamin
%A White, Aaron Steven
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F vashishtha-etal-2019-fine
%X We present a novel semantic framework for modeling temporal relations and event durations that maps pairs of events to real-valued scales. We use this framework to construct the largest temporal relations dataset to date, covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to train models for jointly predicting fine-grained temporal relations and event durations. We report strong results on our data and show the efficacy of a transfer-learning approach for predicting categorical relations.
%R 10.18653/v1/P19-1280
%U https://aclanthology.org/P19-1280
%U https://doi.org/10.18653/v1/P19-1280
%P 2906-2919
Markdown (Informal)
[Fine-Grained Temporal Relation Extraction](https://aclanthology.org/P19-1280) (Vashishtha et al., ACL 2019)
ACL
- Siddharth Vashishtha, Benjamin Van Durme, and Aaron Steven White. 2019. Fine-Grained Temporal Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2906–2919, Florence, Italy. Association for Computational Linguistics.