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Abstract

We present FIESTA, a model selection ap-
proach that significantly reduces the compu-
tational resources required to reliably identify
state-of-the-art performance from large col-
lections of candidate models. Despite being
known to produce unreliable comparisons, it
is still common practice to compare model
evaluations based on single choices of random
seeds. We show that reliable model selec-
tion also requires evaluations based on multi-
ple train-test splits (contrary to common prac-
tice in many shared tasks). Using bandit the-
ory from the statistics literature, we are able to
adaptively determine appropriate numbers of
data splits and random seeds used to evaluate
each model, focusing computational resources
on the evaluation of promising models whilst
avoiding wasting evaluations on models with
lower performance. Furthermore, our user-
friendly Python implementation produces con-
fidence guarantees of correctly selecting the
optimal model. We evaluate our algorithms
by selecting between 8 target-dependent sen-
timent analysis methods using dramatically
fewer model evaluations than current model
selection approaches.

1 Introduction and Background

Natural Language Processing (NLP) is a field
driven by empirical evaluations. Authors are under
pressure to demonstrate that their models or meth-
ods achieve state-of-the-art performance on a par-
ticular task or dataset, which by definition requires
reliable model comparison. As models become
more numerous, require larger computational re-
sources to train, and the performance of compet-
ing models gets closer, the task of reliable model
selection has not only become more important, but
also increasingly difficult. Without full disclosure
of model settings and data splits, it is impossible
to accurately compare methods and models.

To be able to perform meaningful model com-
parisons, we need to be able to reliably evaluate
models. Unfortunately, evaluating a model is a
non-trivial task and the best we can do is to pro-
duce noisy estimates of model performance with
the following two distinct sources of stochasticity:

1. We only have access to a finite training
dataset, however, evaluating a model on its
training data leads to severe over-estimates
of performance. To evaluate models with-
out over-fitting, practitioners typically ran-
domly partitioning data into independent
training and testing sets, producing estimates
that are random quantities with often high
variability for NLP problems (Moss et al.,
2018). Although methods like bootstrapping
(Efron and Tibshirani, 1994) and leave-one-
out cross validation (Kohavi, 1995) can pro-
vide deterministic estimates of performance,
they require the fitting of a large number of
models and so are not computationally fea-
sible for the complex models and large data
prevalent in NLP. Standard NLP model eval-
uation strategies range from using a simple
(and computationally cheap) single train-test
split, to the more sophisticated K-fold cross
validation, CV (Kohavi, 1995).

2. The vast majority of recent NLP models are
non-deterministic and so their performance
has another source of stochasticity, controlled
by the choice of random seed during train-
ing. Common sources of model instabil-
ity in modern NLP include weight initiali-
sation, data sub-sampling for stochastic gra-
dient calculation, negative sampling used to
train word embeddings (Mikolov et al., 2013)
and feature sub-sampling for ensemble meth-
ods. In particular, the often state-of-the-art
LSTMs (and its many variants) have been
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shown to exhibit high sensitivity to random
seeds (Reimers and Gurevych, 2017).

For reliable model selection, it is crucial to take
into account both sources of variability when esti-
mating model performance. Observing a higher
score for one model could be a consequence of
a particularly non-representative train-test split
and/or random seed used to evaluate the model
rather than a genuine model improvement. This
subtlety is ignored by large scale NLP competi-
tions such as SemEval with evaluations based on a
pre-determined train-test split.

Although more precise model evaluations can
be obtained with higher computation, calculating
overly precise model evaluations is a huge waste
of computational resource. On the other hand,
our evaluations need to provide reliable conclu-
sions (with only a small probability of selecting
a sub-optimal model). It is poorly understood how
to choose an appropriate evaluation strategy for
a given model selection problem. These are task
specific, depending on model stability, the close-
ness in performance of competing models and sub-
tle properties of the data such as the representa-
tiveness of train-test splits.

In contrast to common practice, we consider
model selection as a sequential process. Rather
than using a fixed evaluation strategy for each
model (which we refer to as a non-adaptive ap-
proach), we start with a cheap evaluation of each
model on just a single train-test split, and then
cleverly choose where to allocate further compu-
tational resources based on the observed evalua-
tions. If we decide to further test a promising
model, we calculate an additional evaluation based
on another data split and seed, observing both
sources of evaluation variability and allowing reli-
able assessments of performance.

To perform sequential model fitting, we borrow
methods from the multi-armed-bandit (MAB) sta-
tistical literature (Lai and Robbins, 1985). This
field covers problems motivated by designing opti-
mal strategies for pulling the arms of a bandit (also
known as a slot machine) in casinos. Each arm
produces rewards from different random distribu-
tions which the user must learn by pulling arms.
In particular, model selection is equivalent to the
problem of best-arm-identification; identifying the
arm with the highest mean. Although appearing
simple at a first glance, this problem is deceptively
complex and has provided motivation for efficient

algorithms in a wide range of domains, including
clinical trials (Villar et al., 2015) and recommen-
dation systems (Li et al., 2010).

Although we believe that we are the first to use
bandits to reduce the cost and improve the relia-
bility of model selection, we are not the first to
use them in NLP. Recent work in machine transla-
tion makes use of another major part of the MAB
literature, seeking to optimise the long-term per-
formance of translation algorithms (Nguyen et al.,
2017; Sokolov et al., 2016; Lawrence et al., 2017).
Within NLP, our work is most similar to Haf-
fari et al. (2017), who use bandits to minimise
the number of data queries required to calculate
the F-scores of models. However, this work does
not consider the stochasticity of the resulting esti-
mates or easily extend to other evaluation metrics.

The main contribution of this paper is the ap-
plication of three intuitive algorithms to model se-
lection in NLP, alongside a user-friendly Python
implementation: FIESTA (Fast IdEntification of
State-of-The-Art)1. We can automatically identify
an optimal model from large collections of can-
didate models to a user-chosen confidence level
in a small number of model evaluations. We fo-
cus on three distinct scenarios that are of interest
to the NLP community. Firstly, we consider the
fixed budget (FB) model selection problem (Sec-
tion 4.1), a situation common in industry, where
a fixed quota of computational resources (or time
constraints for real-time decisions) must be ap-
propriately allocated to identify an optimal model
with the highest possible confidence. In contrast,
we also consider the fixed confidence (FC) prob-
lem (Section 4.2), which we expect to be of more
use for researchers. Here, we wish to claim with a
specified confidence level that our selected model
is state-of-the-art against a collection of compet-
ing models using the minimal amount of compu-
tation. Finally, we also consider an extension to
the FC scenario, where a practitioner has the com-
putational capacity to fit multiple models in paral-
lel. We demonstrate the effectiveness of our pro-
cedures over current model selection approaches
when identifying an optimal target-dependent sen-
timent analysis model from a set of eight compet-
ing candidate models (Section 5).

1https://github.com/apmoore1/fiesta

https://github.com/apmoore1/fiesta
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2 Motivating example

We now provide evidence for the need to vary both
data splits and random seeds for reliable model se-
lection. We extend the motivating example used in
the work of Reimers and Gurevych (2017), com-
paring two LSTM-based Named Entity Recogni-
tion (NER) models by Ma and Hovy (2016) and
Lample et al. (2016), differing only in character
representation (via a CNN and a LSTM respec-
tively). We base model training on Ma and Hovy
(2016), however, following the settings of Yang
et al. (2018) we use a batch size of 64, a weight
decay of 10e−9 and removed momentum. We ran
each of the NER models five times with a differ-
ent random seed on 150 different train, validation,
and test splits2. Reimers and Gurevych (2017)
showed the effect of model instability between
these two models, where changing the model’s
random seeds can lead to drawing different con-
clusions about which model performed best. We
extend this argument by showing that different
conclusions can also be drawn if we instead vary
the train-test split used for the model evaluation
(Figure 1). We see that while data splits 0 and 2
correctly suggest that the LSTM is optimal, using
data split 1 suggests the opposite. Therefore, it is
clear that we must vary both the random seeds and
train-test splits used to evaluate our models if we
want reliable model selection.

3 Problem Statement

Extending notation from Arcuri and Briand
(2014), we can precisely state the task of select-
ing between a collection of N candidate models
S = {m1,m2, ..mN} as finding

m∗ = argmax
m∈S

M(m). (1)

m∗ is the best model according to some cho-
sen evaluation metric M that measures the per-
formance of that model, e.g accuracy, F-score or
AUC (for an summary of model evaluation met-
rics see Friedman et al. (2001)).

As already argued, Equation (1) paints an overly
simplistic picture of model selection. In real-
ity we only have access to noisy realisations of
the true model score M(m) and direct compar-
isons of single realisations of random variables are

2The original CoNLL data was split with respect to time
rather than random sub-sampling, explaining the discrepancy
with previous scores on this dataset using the same models.

Figure 1: The left plot shows the distribution of results
when varying the data splits and random seeds, with
the dashed lines representing the quartile values. The
three right plots each represent a different single data
split over five runs on different random seeds. The lines
represent a single run result.

unreliable. Therefore, we follow the arguments
of Reimers and Gurevych (2018) and consider a
meaningful way of comparing noisy model eval-
uations: namely, finding the model with largest
expected performance estimate across different
train-test splits and random seeds. Defining the
mean performance of model m as µm, we see that
the task of model selection is equivalent to the
accurate learning and comparison of these N un-
known means:

m∗ = argmax
m∈S

µm.

We can now set up the sequential framework
of our model selection procedure and precisely
state what we mean by reliable model selection.
At each step in our algorithm we choose a model
to evaluate and sample a performance estimate
by randomly generating a data split and random
seed. After collecting evaluations, we can cal-
culate sample means for each model, which we
denote as µ̂m. After running our algorithm for
T steps, reliable model selection corresponds to
knowing how confident we should be that our cho-
sen model m̂T = argmax µ̂m is in fact the true
optimal model m∗, i.e. we wish to make a precise
statement of the form;

P (m̂T = m∗) ≥ 1− δ, (2)

where 1− δ represents this confidence.
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In Section 1 we motivated two distinct goals of
a sequential model selection routine, which we can
now state as:

1. Fixed budget model selection (FB): We
wish to find the best model using only a fixed
budget of T model evaluations. The aim is
to collect the T evaluations that allow us to
claim (2) with the largest possible confidence
level 1− δ.

2. Fixed confidence model selection (FC): We
wish to find the best model to a pre-specified
confidence level. The aim is to collect the
minimal number of model evaluations that al-
low us to claim (2).

Although an algorithm designed to do well in one
of these scenarios will likely also do well in the
other, we will see that to achieve the best perfor-
mance at either FB or FC model selection, we re-
quire subtly different algorithms.

4 Algorithms

We now examine model selection from a bandit
viewpoint, summarising three bandit algorithms
and relating their use to three distinct model se-
lection scenarios. Although the underpinning the-
oretical arguments for these algorithms are beyond
the scope of this work, we do highlight one point
that is relevant for model selection; that scenar-
ios enjoying the largest efficiency gains from mov-
ing to adaptive algorithms are those where only a
subset of arms have performance close to optimal
(Jamieson et al., 2013). Model selection in NLP is
often in this scenario, with only a small number of
considered models being close to state-of-the-art,
and so (as we demonstrate in Section 5) NLP has a
lot to gain from using our adaptive model selection
algorithms.

4.1 Fixed Budget by Sequential Halving
FB best-arm identification algorithms are typi-

cally based on successively eliminating arms un-
til just a single (ideally) optimal arm remains
(Jamieson et al., 2013; Jamieson and Nowak,
2014; Audibert and Bubeck, 2010). We focus on
the sequential halving (SH) algorithm of Karnin
et al. (2013) (Algorithm 1). Here we break our
model selection routine into a series of

⌊
log2N

⌋
rounds, each discarding the least promising half
of our candidate model set, eventually resulting
in a single remaining model. Our computational

Algorithm 1 Sequential Halving for Fixed Budget
Model Selection
Require: Computational Budget T ,

Set of N candidate models S
while |S| 6= 1 do

Evaluate each model m in S
⌊

T
|S|dlog2 Ne

⌋
times
Update the empirical means µ̂m
Remove

⌊ |S|
2

⌋
models with worst µ̂m from S

end while
return Chosen model S

budget T is split equally among the rounds to be
equally budgeted among the models remaining in
that round. This allocation strategy ensures an ef-
ficient use of resources, for example the surviving

final two models are evaluated 2

⌊
log2N

⌋
− 1 times

as often as the models eliminated in the first round.
An example run of the algorithm is summarised in
Table 1.

Round Candidate Models # Evaluations

1 S = {m1,m2,m3,m4} 2
2 S = {m2,m4} 4

output: S = {m2}

Table 1: An example of sequential elimination select-
ing between four models with a budget of T = 16.
After two evaluations of each model, two models are
eliminated. The remaining budget is then used to reli-
ably decide between the remaining pair. Standard prac-
tice would evaluate each model an equal four times,
wasting computational resources on sub-optimal mod-
els.

In the bandit literature (Karnin et al., 2013), this
algorithm is shown to have strong theoretical guar-
antees of reliably choosing the optimal arm, as
long as the reward-distributions for each arm are
bounded (limited to some finite range). This is not
a restrictive assumption for NLP, as the majority of
common performance metrics are bounded, for ex-
ample accuracy, recall, precision and F-score are
all constrained to lie in [0, 1]. We will demonstrate
the effectiveness of sequential halving for model
selection in Section 5.

4.2 Fixed Confidence by TTTS

For fixed confidence model selection, where we
wish to guarantee the selection of an optimal arm
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at a given confidence level, we cannot just dis-
card arms that are likely to be sub-optimal with-
out accurately estimating this likelihood of sub-
optimality. Although approaches that sequentially
eliminate arms (like our sequential halving al-
gorithm) do exist for FC best-arm identification
(Jamieson et al., 2014; Karnin et al., 2013; Au-
dibert and Bubeck, 2010; Even-Dar et al., 2002),
the best theoretical guarantees for the FC problem
come from algorithms that maintain the ability to
sample any arm at any point in the selection pro-
cedure (Garivier and Kaufmann, 2016; Jamieson
and Nowak, 2014). Rather than seeking to elim-
inate half the considered models at regular inter-
vals of computation, a model is only evaluated un-
til we can be sufficiently confident that it is sub-
optimal. Unfortunately, the performance guaran-
tees for these methods are asymptotic results (in
the number of arms and the number of arm pulls)
and have little practical relevance to the (at most)
tens of arms in a model selection problem.

Our practical recommendation for FC model se-
lection is a variant of the well-known Bayesian
sampling algorithm, Thompson sampling, known
as top-two Thompson sampling (TTTS) (Russo,
2016). We will see that this algorithm can
efficiently allocate computational resources to
quickly find optimal models. Furthermore, this
approach provides full uncertainty estimation over
the final choice of model, providing the confidence
guarantees required for FC model selection.

Our implementation makes the assumption that
the evaluations of each model roughly follow a
Gaussian distribution, with different means and
variances. Although such assumptions are com-
mon in the model evaluation literature (Reimers
and Gurevych, 2018) and for statistical testing in
NLP (Dror et al., 2018), they could be problem-
atic for the bounded metrics common in NLP.
Therefore we also experimented with modelling
the logit transformation of our evaluations, map-
ping our evaluation metric to the whole real line.
However, for our examples of Section 5 we found
that this mapping provided a negligible improve-
ment in reliability and so was not worth including
in our experimental results. This may not be the
case for other tasks or less well-behaved evalua-
tion metrics and so we include this functionality
in the FIESTA package.

3We enforce a minimum of three evaluations to ensure
that the t distribution in our posterior remains well-defined

Algorithm 2 Top-Two Thompson Sampling

Require: Desired Confidence 1− δ,
Set of N candidate models S

Initialise a uniform belief π
Evaluate each model in S three times 3

Update belief π
while maxm∈S πm ≤ 1− δ do

Sample distinct m1 and m2 according to π
Randomly choose between m1 and m2

Evaluate chosen model
Update belief π

end while
return Chosen model argmaxm∈S πm

To provide efficient model selection, we use our
current believed probability that a given model is
optimal πm = P (m∗ = m) (producing a distri-
bution over the models π = {π1, .., πN}) to drive
the allocation of computational resources. Stan-
dard Thompson sampling is a stochastic algorithm
that generates a choice of model by sampling from
our current belief π, i.e. choosing to evaluate a
model with the same probability that we believe
is optimal (see Russo et al. (2018) for a concise
introduction). Although this strategy allows us to
focus computation on promising arms, it actually
does so too aggressively. Once we believe that an
arm is optimal with reasonably high confidence,
computation will be heavily focused on evaluat-
ing this arm even though we need to become more
confident about the sub-optimality of competing
models to improve our confidence level. This crit-
icism motivates our chosen algorithm TTTS (sum-
marised in Algorithm 2), where instead of sam-
pling a single model according to π, we sample
two distinct models. We then uniformly choose
between these two models for the next evalua-
tion, allowing a greater exploration of the arms
and much improved rates of convergence to the de-
sired confidence level (Russo, 2016). We use this
new evaluation to update our belief and continue
making evaluations until we believe that a model
is optimal with a higher probability than 1− δ and
terminate the algorithm. An example run of TTTS
is demonstrated on a synthetic example in Fig-
ure 2, where we simulate from 5 Gaussian distri-
butions with means {0.65, 0.69, 0.69, 0.70, 0.71}
and standard deviation 0.01 to mimic accuracy
measurements for a model selection problem.

We now explain how we calculate π (our be-
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Figure 2: TTTS seeking the optimal model with confi-
dence 0.99 from 5 synthetic models. The background
represents our evolving belief π in the optimal model
and the lines represent the proportion of the total eval-
uations made on each model. We start evaluating the
models uniformly but our adaptive algorithm quickly
focuses resources on the best models.

lief in the location of the optimal model) using
well-known results from Bayesian decision the-
ory (see Berger (2013) for a comprehensive cover-
age). As justified earlier, we assume that the eval-
uations of model m are independently distributed
with a Gaussian distributionN (µm, σ

2
m) for some

unknown mean µm and variance σ2m. Although we
are primarily interested in learning µm, we must
also learn σ2m in order to make confidence guar-
antees about the optimality of our selected model.
Therefore, as well as keeping track of the sample
means for the evaluations of each model µ̂m, we
also keep track of the sample variances Ŝm and
counters Tm of the number of times each model
has been evaluated. To facilitate inference, we
choose a uniform prior for the unknown µm and
σm. Not only is this a conjugate prior for Gaus-
sian likelihoods, but it is also shown to encour-
age beneficial exploratory behaviour when using
Thompson sampling on Gaussian bandit problems
(Honda and Takemura, 2014) and so allows fast
identification of optimal arms (or models). Af-
ter observing Tm evaluations of each model and
producing estimates µ̂m and Ŝm, our posterior be-
lief for each deviation between the true and ob-
served model means µm− µ̂m satisfies (as derived
in (Honda and Takemura, 2014));

√
Tm(Tm − 2)

Ŝm
(µm − µ̂m) | µ̂m, Ŝm ∼ tTm−2,

where td is a Student’s t-distribution with d de-
grees of freedom.

π is then defined as the probability vector, such
that πm is the relative probability that µm is the
largest according to this posterior belief. Unfor-
tunately, there is no closed form expression for
the maximum of N t-distributions and so FIESTA
uses a simple Monte-Carlo approximation based
on the sample maxima of repeated draws from our
posteriors for µm. In practice this is very accurate
and did not slow down our experiments, especially
in comparison to the time saved by reducing the
number of model evaluations.

4.3 Batch Fixed Confidence by BTS

NLP practitioners often have the computational
capacity to fit models in parallel across multi-
ple workers, evaluating multiple models or the
same model across multiple seeds at once. Their
model selection routines must therefore provide
batches of models to evaluate. Our proposed solu-
tion to FB model selection naturally provides such
batches, with each successive round of SH pro-
ducing a collection of model evaluations that can
be calculated in parallel. Unfortunately, TTTS for
FC model selection successively chooses and then
waits for the evaluation of single models and so is
not naturally suited to parallelism.

Extending TTTS to batch decision making is an
open problem in the MAB literature. Therefore,
we instead consider batch Thompson sampling
(BTS), an extension of standard Thompson sam-
pling (as described in Section 4.2) to batch sam-
pling from the related field of Bayesian optimisa-
tion (Kandasamy et al., 2018). At each step in our
selection process we take B model draws accord-
ing to our current belief π that the model is op-
timal, where B represents our computational ca-
pacity. This is in contrast to the single draw in
standard Thompson sampling and the drawn pair
in TTTS. In addition, this approach extends to the
asynchronous setting, where rather than waiting
for the whole batch of B models to be evaluated
before choosing the next batch, each worker can
draw a new model to evaluate according to the up-
dated π. This flexibility provides an additional
efficiency gain for problems where the different
models have a wide range of run times.
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5 Experiments

We now test our three algorithms on a challeng-
ing model selection task typical of NLP, select-
ing between eight Target Dependent Sentiment
Analysis (TDSA) models based on their macro
F1 score. We consider two variants of four re-
implementations of well-known TDSA models:
ATAE (Wang et al., 2016), IAN (Ma et al., 2017),
TDLSTM (Tang et al., 2016) (without target words
in the left and right LSTM), and a non-target-
aware LSTM method used as the baseline in Tang
et al. (2016).

These methods represent state-of-the-art within
TDSA, with only small differences in performance
between TDLSTM, IAN, and ATAE (see figure
3). All the models are re-implemented in PyTorch
(Paszke et al., 2017) using AllenNLP (Gardner
et al., 2018). To ensure the only difference be-
tween the models is their network architecture the
models use the same optimiser settings and the
same regularisation. All words are lower cased
and we use the same Glove common crawl 840B
token 300 dimension word embedding (Penning-
ton et al., 2014). We use variational (Gal and
Ghahramani, 2016) and regular (Hinton et al.,
2012) dropout for regularisation and an ADAM
(Kingma and Ba, 2014) optimiser with standard
settings, a batch size of 32 and use at most 100
epochs (with early stopping on a validation set).
Many of these settings are not the same as orig-
inally implemented, however, having the same
training setup is required for fair comparison (this
explains the differences between our results and
the original implementations). To increase the dif-
ficulty of our model selection problem, we addi-
tionally create four extra models by reducing the
dimensions of the Glove vectors to 50 and remov-
ing dropout. Although these models are clearly
not state-of-the-art, they increase the size of our
candidate model set and so provide a more com-
plicated model selection problem (an intuition dis-
cussed in Appendix A).

All of the TDSA experiments are conducted on
the well-studied SemEval 2014 task 4 Restaurant
dataset (Pontiki et al., 2014) and we force train-
val-test splits to follow the same ratios as this
dataset’s official train-test split. Each individual
model evaluation is then made on a randomly gen-
erated train-test split and random seed to access
both sources of evaluation variability.

Figure 3: F1 scores for our candidate TDSA models.
After 500 evaluations of each model on different data
splits and model seeds we see that the TDLSTM is the
state-of-the-art model.

5.1 Fixed Budget Model Selection

We use the TDSA model selection problem to
test fixed budget model selection. To thoroughly
test our algorithm, we consider an additional four
models based on 200 dimensional Glove vectors,
bringing the total number of models to 12. We
compare our approach of sequential halving to
the standard non-adaptive approach of splitting the
available computational budget equally between
the 12 candidate models. For example, we would
allocate a budget of 24 model evaluations as eval-
uating each model two times and selecting the
model with the highest sample mean.

Figure 4 compares the proportion of 10, 000
runs of sequential halving that correctly identify
the optimal model with the proportion identified
by the non-adaptive approach with the same com-
putational budget. Sequential halving identifies
the optimal model more reliably (≈ 15% more
often) than the current approach to FB model se-
lection in NLP. Using sequential halving with 204
evaluations almost always (99% of runs) selects
the optimal model, whereas the non-adaptive ap-
proach is only correct 85% of the time.

5.2 Fixed Confidence Model Selection

We perform fixed confidence model selection on
the eight TDSA candidate models (the full models
and those based on 50 dimensional vectors). We
compare TTTS to a non-adaptive approach where
all models are evaluated at each step, irrespective
of the results of earlier evaluations (the standard
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# evaluations with Non-Adaptive # evaluations with TTTS

δ min mean max
% correctly
selected

min mean max
% correctly
selected

0.05 48 281 1552 100 27 130 518 100
0.1 40 206 1192 99 24 96 460 99
0.2 32 128 608 96 24 65 274 97

Table 2: Number of evaluations required to select a TDSA model at a range of confidence levels across 500 runs
of TTTS and a standard non-adaptive approach.

Figure 4: Proportion of the runs correctly selecting the
optimal TDSA model using sequential halving against
the standard non-adaptive approach. Sequential halv-
ing consistently identifies the optimal model at a sig-
nificantly higher rate across a wide range of budgets.

approach for model selection in NLP). We run
this non-adaptive approach until we reach the re-
quired confidence level calculated using the same
Bayesian framework as in TTTS.

We run each approach 500 times and note the
number evaluations required to get to a range
of confidence levels (Table 2) alongside the pro-
portion that correctly identify the optimal model.
TTTS requires substantially less model evalua-
tions (in terms of the minimum, mean and max
across our runs) to reach a given confidence level
than the non-adaptive approach, achieving the
same reliability at half the cost (on average).
TTTS is able to quickly identify sub-optimal mod-
els and so can avoid wasting resources repeatedly
evaluating the whole candidate set.

Finally, we test our proposed approach to batch
FC model selection by running exactly the same
experiment but using BTS to choose collections
of four and eight models at a time (Table 3). As
expected, performance degrades as we increase
batch size, with batches of four allowing more fine

grained control over model evaluations than us-
ing batches of eight. In particular, due to the ex-
ploitative nature of Thompson sampling, we see
that selecting models to a very high confidence
(95%) requires more computation with BTS than
the standard non-adaptive approach. However,
BTS does reach the other confidence levels faster
and correctly identifies the optimal model more of-
ten. However, as TTTS performs significantly bet-
ter across all confidence levels, we emphasise the
need for a less-exploitative version of BTS with
adjustments similar to those used in TTTS.

6 Conclusions

The aim of this paper has been to propose three
algorithms for model selection in NLP, provid-
ing efficient and reliable selection for two dis-
tinct realistic scenarios: fixed confidence and fixed
budget model selection. Crucially, our research
further calls into question the current practice in
NLP evaluation as used in the literature and in-
ternational competitions such as SemEval. Our
algorithms adaptively allocate resources to eval-
uate promising models, basing evaluations across
multiple random seeds and train-test splits. We
demonstrate that this allows significant computa-
tional savings and improves reliability over current
model selection approaches.

Although we have demonstrated that our algo-
rithms perform well on a complex model selec-
tion problem typical of NLP, there is still work to
be done to create algorithms more suited to these
problems. Future research directions include mak-
ing selection routines more robust to evaluation
outliers, relaxing our Gaussian assumptions and
developing more effective batch strategies.
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8 Appendix

A Characterising the Difficulty of a
Model Selection Problem

We briefly summarise a result from the best-arm
identification literature, providing intuition for our
experiment section by providing a mechanism to
characterise the difficulty of a model selection
problem. Intuitively, model selection difficulty in-
creases with the size of the set of candidate mod-
elsN and as the performance of sub-optimal mod-
els approaches that of the optimal model (and be-
comes harder to distinguish), i.e. as µm∗ − µm
gets small for some sub-optimal arm m. In fact,
it is well known in the MAB literature that it is
exactly these two properties that characterise the
complexity of a best-arm-identification problem,
confirming our intuition for model selection. Man-
nor and Tsitsiklis (2004) show that the number of
arm pulls required for the identification of a best
arm at a confidence level 1− δ has at least a com-
putational complexity of O(H log(1/δ)), where

H =
∑

m′∈S\{m∗}

1

(µm∗ − µm)2
.
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