@inproceedings{held-habash-2019-effectiveness,
title = "The Effectiveness of Simple Hybrid Systems for Hypernym Discovery",
author = "Held, William and
Habash, Nizar",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1327/",
doi = "10.18653/v1/P19-1327",
pages = "3362--3367",
abstract = "Hypernymy modeling has largely been separated according to two paradigms, pattern-based methods and distributional methods. However, recent works utilizing a mix of these strategies have yielded state-of-the-art results. This paper evaluates the contribution of both paradigms to hybrid success by evaluating the benefits of hybrid treatment of baseline models from each paradigm. Even with a simple methodology for each individual system, utilizing a hybrid approach establishes new state-of-the-art results on two domain-specific English hypernym discovery tasks and outperforms all non-hybrid approaches in a general English hypernym discovery task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="held-habash-2019-effectiveness">
<titleInfo>
<title>The Effectiveness of Simple Hybrid Systems for Hypernym Discovery</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Held</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hypernymy modeling has largely been separated according to two paradigms, pattern-based methods and distributional methods. However, recent works utilizing a mix of these strategies have yielded state-of-the-art results. This paper evaluates the contribution of both paradigms to hybrid success by evaluating the benefits of hybrid treatment of baseline models from each paradigm. Even with a simple methodology for each individual system, utilizing a hybrid approach establishes new state-of-the-art results on two domain-specific English hypernym discovery tasks and outperforms all non-hybrid approaches in a general English hypernym discovery task.</abstract>
<identifier type="citekey">held-habash-2019-effectiveness</identifier>
<identifier type="doi">10.18653/v1/P19-1327</identifier>
<location>
<url>https://aclanthology.org/P19-1327/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3362</start>
<end>3367</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Effectiveness of Simple Hybrid Systems for Hypernym Discovery
%A Held, William
%A Habash, Nizar
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F held-habash-2019-effectiveness
%X Hypernymy modeling has largely been separated according to two paradigms, pattern-based methods and distributional methods. However, recent works utilizing a mix of these strategies have yielded state-of-the-art results. This paper evaluates the contribution of both paradigms to hybrid success by evaluating the benefits of hybrid treatment of baseline models from each paradigm. Even with a simple methodology for each individual system, utilizing a hybrid approach establishes new state-of-the-art results on two domain-specific English hypernym discovery tasks and outperforms all non-hybrid approaches in a general English hypernym discovery task.
%R 10.18653/v1/P19-1327
%U https://aclanthology.org/P19-1327/
%U https://doi.org/10.18653/v1/P19-1327
%P 3362-3367
Markdown (Informal)
[The Effectiveness of Simple Hybrid Systems for Hypernym Discovery](https://aclanthology.org/P19-1327/) (Held & Habash, ACL 2019)
ACL