@inproceedings{wu-etal-2019-generating,
title = "Generating Question Relevant Captions to Aid Visual Question Answering",
author = "Wu, Jialin and
Hu, Zeyuan and
Mooney, Raymond",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1348/",
doi = "10.18653/v1/P19-1348",
pages = "3585--3594",
abstract = "Visual question answering (VQA) and image captioning require a shared body of general knowledge connecting language and vision. We present a novel approach to better VQA performance that exploits this connection by jointly generating captions that are targeted to help answer a specific visual question. The model is trained using an existing caption dataset by automatically determining question-relevant captions using an online gradient-based method. Experimental results on the VQA v2 challenge demonstrates that our approach obtains state-of-the-art VQA performance (e.g. 68.4{\%} in the Test-standard set using a single model) by simultaneously generating question-relevant captions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2019-generating">
<titleInfo>
<title>Generating Question Relevant Captions to Aid Visual Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jialin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyuan</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Visual question answering (VQA) and image captioning require a shared body of general knowledge connecting language and vision. We present a novel approach to better VQA performance that exploits this connection by jointly generating captions that are targeted to help answer a specific visual question. The model is trained using an existing caption dataset by automatically determining question-relevant captions using an online gradient-based method. Experimental results on the VQA v2 challenge demonstrates that our approach obtains state-of-the-art VQA performance (e.g. 68.4% in the Test-standard set using a single model) by simultaneously generating question-relevant captions.</abstract>
<identifier type="citekey">wu-etal-2019-generating</identifier>
<identifier type="doi">10.18653/v1/P19-1348</identifier>
<location>
<url>https://aclanthology.org/P19-1348/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3585</start>
<end>3594</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Question Relevant Captions to Aid Visual Question Answering
%A Wu, Jialin
%A Hu, Zeyuan
%A Mooney, Raymond
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wu-etal-2019-generating
%X Visual question answering (VQA) and image captioning require a shared body of general knowledge connecting language and vision. We present a novel approach to better VQA performance that exploits this connection by jointly generating captions that are targeted to help answer a specific visual question. The model is trained using an existing caption dataset by automatically determining question-relevant captions using an online gradient-based method. Experimental results on the VQA v2 challenge demonstrates that our approach obtains state-of-the-art VQA performance (e.g. 68.4% in the Test-standard set using a single model) by simultaneously generating question-relevant captions.
%R 10.18653/v1/P19-1348
%U https://aclanthology.org/P19-1348/
%U https://doi.org/10.18653/v1/P19-1348
%P 3585-3594
Markdown (Informal)
[Generating Question Relevant Captions to Aid Visual Question Answering](https://aclanthology.org/P19-1348/) (Wu et al., ACL 2019)
ACL