@inproceedings{mehri-etal-2019-pretraining,
title = "Pretraining Methods for Dialog Context Representation Learning",
author = "Mehri, Shikib and
Razumovskaia, Evgeniia and
Zhao, Tiancheng and
Eskenazi, Maxine",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1373/",
doi = "10.18653/v1/P19-1373",
pages = "3836--3845",
abstract = "This paper examines various unsupervised pretraining objectives for learning dialog context representations. Two novel methods of pretraining dialog context encoders are proposed, and a total of four methods are examined. Each pretraining objective is fine-tuned and evaluated on a set of downstream dialog tasks using the MultiWoz dataset and strong performance improvement is observed. Further evaluation shows that our pretraining objectives result in not only better performance, but also better convergence, models that are less data hungry and have better domain generalizability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mehri-etal-2019-pretraining">
<titleInfo>
<title>Pretraining Methods for Dialog Context Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shikib</namePart>
<namePart type="family">Mehri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeniia</namePart>
<namePart type="family">Razumovskaia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiancheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxine</namePart>
<namePart type="family">Eskenazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper examines various unsupervised pretraining objectives for learning dialog context representations. Two novel methods of pretraining dialog context encoders are proposed, and a total of four methods are examined. Each pretraining objective is fine-tuned and evaluated on a set of downstream dialog tasks using the MultiWoz dataset and strong performance improvement is observed. Further evaluation shows that our pretraining objectives result in not only better performance, but also better convergence, models that are less data hungry and have better domain generalizability.</abstract>
<identifier type="citekey">mehri-etal-2019-pretraining</identifier>
<identifier type="doi">10.18653/v1/P19-1373</identifier>
<location>
<url>https://aclanthology.org/P19-1373/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3836</start>
<end>3845</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pretraining Methods for Dialog Context Representation Learning
%A Mehri, Shikib
%A Razumovskaia, Evgeniia
%A Zhao, Tiancheng
%A Eskenazi, Maxine
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F mehri-etal-2019-pretraining
%X This paper examines various unsupervised pretraining objectives for learning dialog context representations. Two novel methods of pretraining dialog context encoders are proposed, and a total of four methods are examined. Each pretraining objective is fine-tuned and evaluated on a set of downstream dialog tasks using the MultiWoz dataset and strong performance improvement is observed. Further evaluation shows that our pretraining objectives result in not only better performance, but also better convergence, models that are less data hungry and have better domain generalizability.
%R 10.18653/v1/P19-1373
%U https://aclanthology.org/P19-1373/
%U https://doi.org/10.18653/v1/P19-1373
%P 3836-3845
Markdown (Informal)
[Pretraining Methods for Dialog Context Representation Learning](https://aclanthology.org/P19-1373/) (Mehri et al., ACL 2019)
ACL
- Shikib Mehri, Evgeniia Razumovskaia, Tiancheng Zhao, and Maxine Eskenazi. 2019. Pretraining Methods for Dialog Context Representation Learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3836–3845, Florence, Italy. Association for Computational Linguistics.