@inproceedings{hulpus-etal-2019-spreading,
title = "A Spreading Activation Framework for Tracking Conceptual Complexity of Texts",
author = "Hulpu{\textcommabelow{s}}, Ioana and
{\v{S}}tajner, Sanja and
Stuckenschmidt, Heiner",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1377",
doi = "10.18653/v1/P19-1377",
pages = "3878--3887",
abstract = "We propose an unsupervised approach for assessing conceptual complexity of texts, based on spreading activation. Using DBpedia knowledge graph as a proxy to long-term memory, mentioned concepts become activated and trigger further activation as the text is sequentially traversed. Drawing inspiration from psycholinguistic theories of reading comprehension, we model memory processes such as semantic priming, sentence wrap-up, and forgetting. We show that our models capture various aspects of conceptual text complexity and significantly outperform current state of the art.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hulpus-etal-2019-spreading">
<titleInfo>
<title>A Spreading Activation Framework for Tracking Conceptual Complexity of Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioana</namePart>
<namePart type="family">Hulpu\textcommabelows</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanja</namePart>
<namePart type="family">Štajner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heiner</namePart>
<namePart type="family">Stuckenschmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an unsupervised approach for assessing conceptual complexity of texts, based on spreading activation. Using DBpedia knowledge graph as a proxy to long-term memory, mentioned concepts become activated and trigger further activation as the text is sequentially traversed. Drawing inspiration from psycholinguistic theories of reading comprehension, we model memory processes such as semantic priming, sentence wrap-up, and forgetting. We show that our models capture various aspects of conceptual text complexity and significantly outperform current state of the art.</abstract>
<identifier type="citekey">hulpus-etal-2019-spreading</identifier>
<identifier type="doi">10.18653/v1/P19-1377</identifier>
<location>
<url>https://aclanthology.org/P19-1377</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3878</start>
<end>3887</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Spreading Activation Framework for Tracking Conceptual Complexity of Texts
%A Hulpu\textcommabelows, Ioana
%A Štajner, Sanja
%A Stuckenschmidt, Heiner
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F hulpus-etal-2019-spreading
%X We propose an unsupervised approach for assessing conceptual complexity of texts, based on spreading activation. Using DBpedia knowledge graph as a proxy to long-term memory, mentioned concepts become activated and trigger further activation as the text is sequentially traversed. Drawing inspiration from psycholinguistic theories of reading comprehension, we model memory processes such as semantic priming, sentence wrap-up, and forgetting. We show that our models capture various aspects of conceptual text complexity and significantly outperform current state of the art.
%R 10.18653/v1/P19-1377
%U https://aclanthology.org/P19-1377
%U https://doi.org/10.18653/v1/P19-1377
%P 3878-3887
Markdown (Informal)
[A Spreading Activation Framework for Tracking Conceptual Complexity of Texts](https://aclanthology.org/P19-1377) (Hulpuș et al., ACL 2019)
ACL