@inproceedings{troiano-etal-2019-crowdsourcing,
title = "Crowdsourcing and Validating Event-focused Emotion Corpora for {G}erman and {E}nglish",
author = "Troiano, Enrica and
Pad{\'o}, Sebastian and
Klinger, Roman",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1391",
doi = "10.18653/v1/P19-1391",
pages = "4005--4011",
abstract = "Sentiment analysis has a range of corpora available across multiple languages. For emotion analysis, the situation is more limited, which hinders potential research on crosslingual modeling and the development of predictive models for other languages. In this paper, we fill this gap for German by constructing deISEAR, a corpus designed in analogy to the well-established English ISEAR emotion dataset. Motivated by Scherer{'}s appraisal theory, we implement a crowdsourcing experiment which consists of two steps. In step 1, participants create descriptions of emotional events for a given emotion. In step 2, five annotators assess the emotion expressed by the texts. We show that transferring an emotion classification model from the original English ISEAR to the German crowdsourced deISEAR via machine translation does not, on average, cause a performance drop.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="troiano-etal-2019-crowdsourcing">
<titleInfo>
<title>Crowdsourcing and Validating Event-focused Emotion Corpora for German and English</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enrica</namePart>
<namePart type="family">Troiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis has a range of corpora available across multiple languages. For emotion analysis, the situation is more limited, which hinders potential research on crosslingual modeling and the development of predictive models for other languages. In this paper, we fill this gap for German by constructing deISEAR, a corpus designed in analogy to the well-established English ISEAR emotion dataset. Motivated by Scherer’s appraisal theory, we implement a crowdsourcing experiment which consists of two steps. In step 1, participants create descriptions of emotional events for a given emotion. In step 2, five annotators assess the emotion expressed by the texts. We show that transferring an emotion classification model from the original English ISEAR to the German crowdsourced deISEAR via machine translation does not, on average, cause a performance drop.</abstract>
<identifier type="citekey">troiano-etal-2019-crowdsourcing</identifier>
<identifier type="doi">10.18653/v1/P19-1391</identifier>
<location>
<url>https://aclanthology.org/P19-1391</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4005</start>
<end>4011</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Crowdsourcing and Validating Event-focused Emotion Corpora for German and English
%A Troiano, Enrica
%A Padó, Sebastian
%A Klinger, Roman
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F troiano-etal-2019-crowdsourcing
%X Sentiment analysis has a range of corpora available across multiple languages. For emotion analysis, the situation is more limited, which hinders potential research on crosslingual modeling and the development of predictive models for other languages. In this paper, we fill this gap for German by constructing deISEAR, a corpus designed in analogy to the well-established English ISEAR emotion dataset. Motivated by Scherer’s appraisal theory, we implement a crowdsourcing experiment which consists of two steps. In step 1, participants create descriptions of emotional events for a given emotion. In step 2, five annotators assess the emotion expressed by the texts. We show that transferring an emotion classification model from the original English ISEAR to the German crowdsourced deISEAR via machine translation does not, on average, cause a performance drop.
%R 10.18653/v1/P19-1391
%U https://aclanthology.org/P19-1391
%U https://doi.org/10.18653/v1/P19-1391
%P 4005-4011
Markdown (Informal)
[Crowdsourcing and Validating Event-focused Emotion Corpora for German and English](https://aclanthology.org/P19-1391) (Troiano et al., ACL 2019)
ACL