@inproceedings{wang-etal-2019-make,
    title = "Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation",
    author = "Wang, Cunxiang  and
      Liang, Shuailong  and
      Zhang, Yue  and
      Li, Xiaonan  and
      Gao, Tian",
    editor = "Korhonen, Anna  and
      Traum, David  and
      M{\`a}rquez, Llu{\'i}s",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1393/",
    doi = "10.18653/v1/P19-1393",
    pages = "4020--4026",
    abstract = "Introducing common sense to natural language understanding systems has received increasing research attention. It remains a fundamental question on how to evaluate whether a system has the sense-making capability. Existing benchmarks measure common sense knowledge indirectly or without reasoning. In this paper, we release a benchmark to directly test whether a system can differentiate natural language statements that make sense from those that do not make sense. In addition, a system is asked to identify the most crucial reason why a statement does not make sense. We evaluate models trained over large-scale language modeling tasks as well as human performance, showing that there are different challenges for system sense-making."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-make">
    <titleInfo>
        <title>Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Cunxiang</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shuailong</namePart>
        <namePart type="family">Liang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yue</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaonan</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tian</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Korhonen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Traum</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lluís</namePart>
            <namePart type="family">Màrquez</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Introducing common sense to natural language understanding systems has received increasing research attention. It remains a fundamental question on how to evaluate whether a system has the sense-making capability. Existing benchmarks measure common sense knowledge indirectly or without reasoning. In this paper, we release a benchmark to directly test whether a system can differentiate natural language statements that make sense from those that do not make sense. In addition, a system is asked to identify the most crucial reason why a statement does not make sense. We evaluate models trained over large-scale language modeling tasks as well as human performance, showing that there are different challenges for system sense-making.</abstract>
    <identifier type="citekey">wang-etal-2019-make</identifier>
    <identifier type="doi">10.18653/v1/P19-1393</identifier>
    <location>
        <url>https://aclanthology.org/P19-1393/</url>
    </location>
    <part>
        <date>2019-07</date>
        <extent unit="page">
            <start>4020</start>
            <end>4026</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation
%A Wang, Cunxiang
%A Liang, Shuailong
%A Zhang, Yue
%A Li, Xiaonan
%A Gao, Tian
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wang-etal-2019-make
%X Introducing common sense to natural language understanding systems has received increasing research attention. It remains a fundamental question on how to evaluate whether a system has the sense-making capability. Existing benchmarks measure common sense knowledge indirectly or without reasoning. In this paper, we release a benchmark to directly test whether a system can differentiate natural language statements that make sense from those that do not make sense. In addition, a system is asked to identify the most crucial reason why a statement does not make sense. We evaluate models trained over large-scale language modeling tasks as well as human performance, showing that there are different challenges for system sense-making.
%R 10.18653/v1/P19-1393
%U https://aclanthology.org/P19-1393/
%U https://doi.org/10.18653/v1/P19-1393
%P 4020-4026
Markdown (Informal)
[Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation](https://aclanthology.org/P19-1393/) (Wang et al., ACL 2019)
ACL