@inproceedings{barhom-etal-2019-revisiting,
title = "Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution",
author = "Barhom, Shany and
Shwartz, Vered and
Eirew, Alon and
Bugert, Michael and
Reimers, Nils and
Dagan, Ido",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1409/",
doi = "10.18653/v1/P19-1409",
pages = "4179--4189",
abstract = "Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task`s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model`s success."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barhom-etal-2019-revisiting">
<titleInfo>
<title>Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shany</namePart>
<namePart type="family">Barhom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Eirew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Bugert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reimers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task‘s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model‘s success.</abstract>
<identifier type="citekey">barhom-etal-2019-revisiting</identifier>
<identifier type="doi">10.18653/v1/P19-1409</identifier>
<location>
<url>https://aclanthology.org/P19-1409/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4179</start>
<end>4189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution
%A Barhom, Shany
%A Shwartz, Vered
%A Eirew, Alon
%A Bugert, Michael
%A Reimers, Nils
%A Dagan, Ido
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F barhom-etal-2019-revisiting
%X Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task‘s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model‘s success.
%R 10.18653/v1/P19-1409
%U https://aclanthology.org/P19-1409/
%U https://doi.org/10.18653/v1/P19-1409
%P 4179-4189
Markdown (Informal)
[Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution](https://aclanthology.org/P19-1409/) (Barhom et al., ACL 2019)
ACL