@inproceedings{estevez-velarde-etal-2019-automl,
title = "{A}uto{ML} Strategy Based on Grammatical Evolution: A Case Study about Knowledge Discovery from Text",
author = "Estevez-Velarde, Suilan and
Guti{\'e}rrez, Yoan and
Montoyo, Andr{\'e}s and
Almeida-Cruz, Yudivi{\'a}n",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1428/",
doi = "10.18653/v1/P19-1428",
pages = "4356--4365",
abstract = "The process of extracting knowledge from natural language text poses a complex problem that requires both a combination of machine learning techniques and proper feature selection. Recent advances in Automatic Machine Learning (AutoML) provide effective tools to explore large sets of algorithms, hyper-parameters and features to find out the most suitable combination of them. This paper proposes a novel AutoML strategy based on probabilistic grammatical evolution, which is evaluated on the health domain by facing the knowledge discovery challenge in Spanish text documents. Our approach achieves state-of-the-art results and provides interesting insights into the best combination of parameters and algorithms to use when dealing with this challenge. Source code is provided for the research community."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="estevez-velarde-etal-2019-automl">
<titleInfo>
<title>AutoML Strategy Based on Grammatical Evolution: A Case Study about Knowledge Discovery from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suilan</namePart>
<namePart type="family">Estevez-Velarde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoan</namePart>
<namePart type="family">Gutiérrez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrés</namePart>
<namePart type="family">Montoyo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudivián</namePart>
<namePart type="family">Almeida-Cruz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The process of extracting knowledge from natural language text poses a complex problem that requires both a combination of machine learning techniques and proper feature selection. Recent advances in Automatic Machine Learning (AutoML) provide effective tools to explore large sets of algorithms, hyper-parameters and features to find out the most suitable combination of them. This paper proposes a novel AutoML strategy based on probabilistic grammatical evolution, which is evaluated on the health domain by facing the knowledge discovery challenge in Spanish text documents. Our approach achieves state-of-the-art results and provides interesting insights into the best combination of parameters and algorithms to use when dealing with this challenge. Source code is provided for the research community.</abstract>
<identifier type="citekey">estevez-velarde-etal-2019-automl</identifier>
<identifier type="doi">10.18653/v1/P19-1428</identifier>
<location>
<url>https://aclanthology.org/P19-1428/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4356</start>
<end>4365</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AutoML Strategy Based on Grammatical Evolution: A Case Study about Knowledge Discovery from Text
%A Estevez-Velarde, Suilan
%A Gutiérrez, Yoan
%A Montoyo, Andrés
%A Almeida-Cruz, Yudivián
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F estevez-velarde-etal-2019-automl
%X The process of extracting knowledge from natural language text poses a complex problem that requires both a combination of machine learning techniques and proper feature selection. Recent advances in Automatic Machine Learning (AutoML) provide effective tools to explore large sets of algorithms, hyper-parameters and features to find out the most suitable combination of them. This paper proposes a novel AutoML strategy based on probabilistic grammatical evolution, which is evaluated on the health domain by facing the knowledge discovery challenge in Spanish text documents. Our approach achieves state-of-the-art results and provides interesting insights into the best combination of parameters and algorithms to use when dealing with this challenge. Source code is provided for the research community.
%R 10.18653/v1/P19-1428
%U https://aclanthology.org/P19-1428/
%U https://doi.org/10.18653/v1/P19-1428
%P 4356-4365
Markdown (Informal)
[AutoML Strategy Based on Grammatical Evolution: A Case Study about Knowledge Discovery from Text](https://aclanthology.org/P19-1428/) (Estevez-Velarde et al., ACL 2019)
ACL