@inproceedings{nie-etal-2019-dissent,
title = "{D}is{S}ent: Learning Sentence Representations from Explicit Discourse Relations",
author = "Nie, Allen and
Bennett, Erin and
Goodman, Noah",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1442/",
doi = "10.18653/v1/P19-1442",
pages = "4497--4510",
abstract = "Learning effective representations of sentences is one of the core missions of natural language understanding. Existing models either train on a vast amount of text, or require costly, manually curated sentence relation datasets. We show that with dependency parsing and rule-based rubrics, we can curate a high quality sentence relation task by leveraging explicit discourse relations. We show that our curated dataset provides an excellent signal for learning vector representations of sentence meaning, representing relations that can only be determined when the meanings of two sentences are combined. We demonstrate that the automatically curated corpus allows a bidirectional LSTM sentence encoder to yield high quality sentence embeddings and can serve as a supervised fine-tuning dataset for larger models such as BERT. Our fixed sentence embeddings achieve high performance on a variety of transfer tasks, including SentEval, and we achieve state-of-the-art results on Penn Discourse Treebank`s implicit relation prediction task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nie-etal-2019-dissent">
<titleInfo>
<title>DisSent: Learning Sentence Representations from Explicit Discourse Relations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erin</namePart>
<namePart type="family">Bennett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Goodman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Learning effective representations of sentences is one of the core missions of natural language understanding. Existing models either train on a vast amount of text, or require costly, manually curated sentence relation datasets. We show that with dependency parsing and rule-based rubrics, we can curate a high quality sentence relation task by leveraging explicit discourse relations. We show that our curated dataset provides an excellent signal for learning vector representations of sentence meaning, representing relations that can only be determined when the meanings of two sentences are combined. We demonstrate that the automatically curated corpus allows a bidirectional LSTM sentence encoder to yield high quality sentence embeddings and can serve as a supervised fine-tuning dataset for larger models such as BERT. Our fixed sentence embeddings achieve high performance on a variety of transfer tasks, including SentEval, and we achieve state-of-the-art results on Penn Discourse Treebank‘s implicit relation prediction task.</abstract>
<identifier type="citekey">nie-etal-2019-dissent</identifier>
<identifier type="doi">10.18653/v1/P19-1442</identifier>
<location>
<url>https://aclanthology.org/P19-1442/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4497</start>
<end>4510</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DisSent: Learning Sentence Representations from Explicit Discourse Relations
%A Nie, Allen
%A Bennett, Erin
%A Goodman, Noah
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F nie-etal-2019-dissent
%X Learning effective representations of sentences is one of the core missions of natural language understanding. Existing models either train on a vast amount of text, or require costly, manually curated sentence relation datasets. We show that with dependency parsing and rule-based rubrics, we can curate a high quality sentence relation task by leveraging explicit discourse relations. We show that our curated dataset provides an excellent signal for learning vector representations of sentence meaning, representing relations that can only be determined when the meanings of two sentences are combined. We demonstrate that the automatically curated corpus allows a bidirectional LSTM sentence encoder to yield high quality sentence embeddings and can serve as a supervised fine-tuning dataset for larger models such as BERT. Our fixed sentence embeddings achieve high performance on a variety of transfer tasks, including SentEval, and we achieve state-of-the-art results on Penn Discourse Treebank‘s implicit relation prediction task.
%R 10.18653/v1/P19-1442
%U https://aclanthology.org/P19-1442/
%U https://doi.org/10.18653/v1/P19-1442
%P 4497-4510
Markdown (Informal)
[DisSent: Learning Sentence Representations from Explicit Discourse Relations](https://aclanthology.org/P19-1442/) (Nie et al., ACL 2019)
ACL