@inproceedings{wieting-etal-2019-simple,
title = "Simple and Effective Paraphrastic Similarity from Parallel Translations",
author = "Wieting, John and
Gimpel, Kevin and
Neubig, Graham and
Berg-Kirkpatrick, Taylor",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1453/",
doi = "10.18653/v1/P19-1453",
pages = "4602--4608",
abstract = "We present a model and methodology for learning paraphrastic sentence embeddings directly from bitext, removing the time-consuming intermediate step of creating para-phrase corpora. Further, we show that the resulting model can be applied to cross lingual tasks where it both outperforms and is orders of magnitude faster than more complex state-of-the-art baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wieting-etal-2019-simple">
<titleInfo>
<title>Simple and Effective Paraphrastic Similarity from Parallel Translations</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Wieting</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Gimpel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taylor</namePart>
<namePart type="family">Berg-Kirkpatrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a model and methodology for learning paraphrastic sentence embeddings directly from bitext, removing the time-consuming intermediate step of creating para-phrase corpora. Further, we show that the resulting model can be applied to cross lingual tasks where it both outperforms and is orders of magnitude faster than more complex state-of-the-art baselines.</abstract>
<identifier type="citekey">wieting-etal-2019-simple</identifier>
<identifier type="doi">10.18653/v1/P19-1453</identifier>
<location>
<url>https://aclanthology.org/P19-1453/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4602</start>
<end>4608</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simple and Effective Paraphrastic Similarity from Parallel Translations
%A Wieting, John
%A Gimpel, Kevin
%A Neubig, Graham
%A Berg-Kirkpatrick, Taylor
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wieting-etal-2019-simple
%X We present a model and methodology for learning paraphrastic sentence embeddings directly from bitext, removing the time-consuming intermediate step of creating para-phrase corpora. Further, we show that the resulting model can be applied to cross lingual tasks where it both outperforms and is orders of magnitude faster than more complex state-of-the-art baselines.
%R 10.18653/v1/P19-1453
%U https://aclanthology.org/P19-1453/
%U https://doi.org/10.18653/v1/P19-1453
%P 4602-4608
Markdown (Informal)
[Simple and Effective Paraphrastic Similarity from Parallel Translations](https://aclanthology.org/P19-1453/) (Wieting et al., ACL 2019)
ACL