@inproceedings{ouyang-mckeown-2019-neural,
title = "Neural Network Alignment for Sentential Paraphrases",
author = "Ouyang, Jessica and
McKeown, Kathy",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1467",
doi = "10.18653/v1/P19-1467",
pages = "4724--4735",
abstract = "We present a monolingual alignment system for long, sentence- or clause-level alignments, and demonstrate that systems designed for word- or short phrase-based alignment are ill-suited for these longer alignments. Our system is capable of aligning semantically similar spans of arbitrary length. We achieve significantly higher recall on aligning phrases of four or more words and outperform state-of-the- art aligners on the long alignments in the MSR RTE corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ouyang-mckeown-2019-neural">
<titleInfo>
<title>Neural Network Alignment for Sentential Paraphrases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathy</namePart>
<namePart type="family">McKeown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a monolingual alignment system for long, sentence- or clause-level alignments, and demonstrate that systems designed for word- or short phrase-based alignment are ill-suited for these longer alignments. Our system is capable of aligning semantically similar spans of arbitrary length. We achieve significantly higher recall on aligning phrases of four or more words and outperform state-of-the- art aligners on the long alignments in the MSR RTE corpus.</abstract>
<identifier type="citekey">ouyang-mckeown-2019-neural</identifier>
<identifier type="doi">10.18653/v1/P19-1467</identifier>
<location>
<url>https://aclanthology.org/P19-1467</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4724</start>
<end>4735</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Network Alignment for Sentential Paraphrases
%A Ouyang, Jessica
%A McKeown, Kathy
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ouyang-mckeown-2019-neural
%X We present a monolingual alignment system for long, sentence- or clause-level alignments, and demonstrate that systems designed for word- or short phrase-based alignment are ill-suited for these longer alignments. Our system is capable of aligning semantically similar spans of arbitrary length. We achieve significantly higher recall on aligning phrases of four or more words and outperform state-of-the- art aligners on the long alignments in the MSR RTE corpus.
%R 10.18653/v1/P19-1467
%U https://aclanthology.org/P19-1467
%U https://doi.org/10.18653/v1/P19-1467
%P 4724-4735
Markdown (Informal)
[Neural Network Alignment for Sentential Paraphrases](https://aclanthology.org/P19-1467) (Ouyang & McKeown, ACL 2019)
ACL
- Jessica Ouyang and Kathy McKeown. 2019. Neural Network Alignment for Sentential Paraphrases. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4724–4735, Florence, Italy. Association for Computational Linguistics.