@inproceedings{choi-etal-2019-cross,
title = "A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching",
author = "Choi, Jihun and
Kim, Taeuk and
Lee, Sang-goo",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1469",
doi = "10.18653/v1/P19-1469",
pages = "4747--4761",
abstract = "We present a latent variable model for predicting the relationship between a pair of text sequences. Unlike previous auto-encoding{--}based approaches that consider each sequence separately, our proposed framework utilizes both sequences within a single model by generating a sequence that has a given relationship with a source sequence. We further extend the cross-sentence generating framework to facilitate semi-supervised training. We also define novel semantic constraints that lead the decoder network to generate semantically plausible and diverse sequences. We demonstrate the effectiveness of the proposed model from quantitative and qualitative experiments, while achieving state-of-the-art results on semi-supervised natural language inference and paraphrase identification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choi-etal-2019-cross">
<titleInfo>
<title>A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jihun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taeuk</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sang-goo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a latent variable model for predicting the relationship between a pair of text sequences. Unlike previous auto-encoding–based approaches that consider each sequence separately, our proposed framework utilizes both sequences within a single model by generating a sequence that has a given relationship with a source sequence. We further extend the cross-sentence generating framework to facilitate semi-supervised training. We also define novel semantic constraints that lead the decoder network to generate semantically plausible and diverse sequences. We demonstrate the effectiveness of the proposed model from quantitative and qualitative experiments, while achieving state-of-the-art results on semi-supervised natural language inference and paraphrase identification.</abstract>
<identifier type="citekey">choi-etal-2019-cross</identifier>
<identifier type="doi">10.18653/v1/P19-1469</identifier>
<location>
<url>https://aclanthology.org/P19-1469</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4747</start>
<end>4761</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching
%A Choi, Jihun
%A Kim, Taeuk
%A Lee, Sang-goo
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F choi-etal-2019-cross
%X We present a latent variable model for predicting the relationship between a pair of text sequences. Unlike previous auto-encoding–based approaches that consider each sequence separately, our proposed framework utilizes both sequences within a single model by generating a sequence that has a given relationship with a source sequence. We further extend the cross-sentence generating framework to facilitate semi-supervised training. We also define novel semantic constraints that lead the decoder network to generate semantically plausible and diverse sequences. We demonstrate the effectiveness of the proposed model from quantitative and qualitative experiments, while achieving state-of-the-art results on semi-supervised natural language inference and paraphrase identification.
%R 10.18653/v1/P19-1469
%U https://aclanthology.org/P19-1469
%U https://doi.org/10.18653/v1/P19-1469
%P 4747-4761
Markdown (Informal)
[A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching](https://aclanthology.org/P19-1469) (Choi et al., ACL 2019)
ACL