@inproceedings{zhang-etal-2019-hibert,
title = "{HIBERT}: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization",
author = "Zhang, Xingxing and
Wei, Furu and
Zhou, Ming",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1499/",
doi = "10.18653/v1/P19-1499",
pages = "5059--5069",
abstract = "Neural extractive summarization models usually employ a hierarchical encoder for document encoding and they are trained using sentence-level labels, which are created heuristically using rule-based methods. Training the hierarchical encoder with these \textit{inaccurate} labels is challenging. Inspired by the recent work on pre-training transformer sentence encoders (Devlin et al., 2018), we propose Hibert (as shorthand for \textbf{HI}erachical \textbf{B}idirectional \textbf{E}ncoder \textbf{R}epresentations from \textbf{T}ransformers) for document encoding and a method to pre-train it using unlabeled data. We apply the pre-trained Hibert to our summarization model and it outperforms its randomly initialized counterpart by 1.25 ROUGE on the CNN/Dailymail dataset and by 2.0 ROUGE on a version of New York Times dataset. We also achieve the state-of-the-art performance on these two datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-hibert">
<titleInfo>
<title>HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xingxing</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Furu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural extractive summarization models usually employ a hierarchical encoder for document encoding and they are trained using sentence-level labels, which are created heuristically using rule-based methods. Training the hierarchical encoder with these inaccurate labels is challenging. Inspired by the recent work on pre-training transformer sentence encoders (Devlin et al., 2018), we propose Hibert (as shorthand for HIerachical Bidirectional Encoder Representations from Transformers) for document encoding and a method to pre-train it using unlabeled data. We apply the pre-trained Hibert to our summarization model and it outperforms its randomly initialized counterpart by 1.25 ROUGE on the CNN/Dailymail dataset and by 2.0 ROUGE on a version of New York Times dataset. We also achieve the state-of-the-art performance on these two datasets.</abstract>
<identifier type="citekey">zhang-etal-2019-hibert</identifier>
<identifier type="doi">10.18653/v1/P19-1499</identifier>
<location>
<url>https://aclanthology.org/P19-1499/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5059</start>
<end>5069</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization
%A Zhang, Xingxing
%A Wei, Furu
%A Zhou, Ming
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhang-etal-2019-hibert
%X Neural extractive summarization models usually employ a hierarchical encoder for document encoding and they are trained using sentence-level labels, which are created heuristically using rule-based methods. Training the hierarchical encoder with these inaccurate labels is challenging. Inspired by the recent work on pre-training transformer sentence encoders (Devlin et al., 2018), we propose Hibert (as shorthand for HIerachical Bidirectional Encoder Representations from Transformers) for document encoding and a method to pre-train it using unlabeled data. We apply the pre-trained Hibert to our summarization model and it outperforms its randomly initialized counterpart by 1.25 ROUGE on the CNN/Dailymail dataset and by 2.0 ROUGE on a version of New York Times dataset. We also achieve the state-of-the-art performance on these two datasets.
%R 10.18653/v1/P19-1499
%U https://aclanthology.org/P19-1499/
%U https://doi.org/10.18653/v1/P19-1499
%P 5059-5069
Markdown (Informal)
[HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization](https://aclanthology.org/P19-1499/) (Zhang et al., ACL 2019)
ACL