@inproceedings{kato-matsubara-2019-ptb,
title = "{PTB} Graph Parsing with Tree Approximation",
author = "Kato, Yoshihide and
Matsubara, Shigeki",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1530/",
doi = "10.18653/v1/P19-1530",
pages = "5344--5349",
abstract = "The Penn Treebank (PTB) represents syntactic structures as graphs due to nonlocal dependencies. This paper proposes a method that approximates PTB graph-structured representations by trees. By our approximation method, we can reduce nonlocal dependency identification and constituency parsing into single tree-based parsing. An experimental result demonstrates that our approximation method with an off-the-shelf tree-based constituency parser significantly outperforms the previous methods in nonlocal dependency identification."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kato-matsubara-2019-ptb">
<titleInfo>
<title>PTB Graph Parsing with Tree Approximation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoshihide</namePart>
<namePart type="family">Kato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shigeki</namePart>
<namePart type="family">Matsubara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Penn Treebank (PTB) represents syntactic structures as graphs due to nonlocal dependencies. This paper proposes a method that approximates PTB graph-structured representations by trees. By our approximation method, we can reduce nonlocal dependency identification and constituency parsing into single tree-based parsing. An experimental result demonstrates that our approximation method with an off-the-shelf tree-based constituency parser significantly outperforms the previous methods in nonlocal dependency identification.</abstract>
<identifier type="citekey">kato-matsubara-2019-ptb</identifier>
<identifier type="doi">10.18653/v1/P19-1530</identifier>
<location>
<url>https://aclanthology.org/P19-1530/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5344</start>
<end>5349</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PTB Graph Parsing with Tree Approximation
%A Kato, Yoshihide
%A Matsubara, Shigeki
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kato-matsubara-2019-ptb
%X The Penn Treebank (PTB) represents syntactic structures as graphs due to nonlocal dependencies. This paper proposes a method that approximates PTB graph-structured representations by trees. By our approximation method, we can reduce nonlocal dependency identification and constituency parsing into single tree-based parsing. An experimental result demonstrates that our approximation method with an off-the-shelf tree-based constituency parser significantly outperforms the previous methods in nonlocal dependency identification.
%R 10.18653/v1/P19-1530
%U https://aclanthology.org/P19-1530/
%U https://doi.org/10.18653/v1/P19-1530
%P 5344-5349
Markdown (Informal)
[PTB Graph Parsing with Tree Approximation](https://aclanthology.org/P19-1530/) (Kato & Matsubara, ACL 2019)
ACL
- Yoshihide Kato and Shigeki Matsubara. 2019. PTB Graph Parsing with Tree Approximation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5344–5349, Florence, Italy. Association for Computational Linguistics.