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Abstract

Existing personalized dialogue models use hu-
man designed persona descriptions to improve
dialogue consistency. Collecting such descrip-
tions from existing dialogues is expensive and
requires hand-crafted feature designs. In this
paper, we propose to extend Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) to
personalized dialogue learning without using
any persona descriptions. Our model learns
to quickly adapt to new personas by lever-
aging only a few dialogue samples collected
from the same user, which is fundamentally
different from conditioning the response on
the persona descriptions. Empirical results on
Persona-chat dataset (Zhang et al., 2018) indi-
cate that our solution outperforms non-meta-
learning baselines using automatic evaluation
metrics, and in terms of human-evaluated flu-
ency and consistency.

1 Introduction

There is a growing interest in learning personal-
ized chit-chat dialogue agents for making chat-
bots more consistent. Recently, a multi-turn
conversational dataset called Persona-chat (Zhang
et al., 2018) has been released, where two speak-
ers are paired and a persona description (4-5 sen-
tences) is randomly assigned to each of them. For
example, “I am an old man” and “I like to play
football” are one of the possible persona descrip-
tions provided to the speaker. By conditioning the
response generation on the persona descriptions, a
chit-chat model is able to produce a more persona
consistent dialogue (Zhang et al., 2018).

However, it is difficult to capture a persona
just by using few sentences, and collecting a non-
synthetic set of persona descriptions from a real
human-human conversation, e.g., Reddit, is chal-
lenging as well since it requires hand-crafted fea-
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Figure 1: The difference between finetuning from a)
joint training on all personas and b) meta-learning per-
sona. The solid line represents the optimization path
of the initial parameters and dashed line the fine-tuning
path. Meta-learned initial parameters can faster adapt
to a new persona.

ture designs (Mazare et al., 2018). In light of this,
we propose to leverage a set of dialogues done by
the same persona directly, instead of using its per-
sona descriptions, to generate a more consistent
response.

We consider learning different personas as dif-
ferent tasks via meta-learning algorithms, which
is fundamentally different from optimizing the
model to represent all the personas. A high-level
intuition of the difference between these two ap-
proaches is shown in Figure 1. We aim to learn a
persona-independent model that is able to quickly
adapt to a new persona given the dialogues. We
formulate this task as a few-shot learning prob-
lem, where K dialogues are used for training and
the remaining for the test. Hence, we expect to
learn initial parameters of a dialogue model that
can quickly adapt to the response style of a certain
persona just by using few dialogues.

The main contribution of this paper is to cast the
personalized dialogue learning as a meta-learning
problem, which allows our model to generate per-
sonalized responses by efficiently leveraging only
a few dialogue samples instead of human-designed
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persona descriptions. Empirical results show that
our solution outperforms joint training, in terms of
human-evaluated fluency and consistency.

2 Personalized Dialogue Learning

2.1 Persona-conditioned dialogue
In Persona-chat dataset (Zhang et al., 2018), a
dialogue is defined as a set of utterances U =
{u1, . . . , un} and a persona description is defined
as a set of sentences P = {p1, . . . , pm}. A per-
sonalized dialogue model fθ is trained to produce
a response Y = ut conditioned on previous utter-
ances X = {u1, . . . , ut−1} and persona sentences
P :

fθ(Y |X,P ; θ) = p (ut|u1:t−1, p1:m; θ) (1)

2.2 Persona-agnostic dialogue
Instead of conditioning our response on the per-
sona sentences, we first adapt θ to the set of dia-
logue made by a persona P and then we only use
the dialogue history to condition our response. Eq.
(1) becomes:

fθ(Y |X; θ) = p (ut|u1:t−1; θ) (2)

Therefore, we define the set of dialogues of a
persona P as Dp = {U1, . . . , Uk}. Conceptu-
ally, a model fθ is expected to generate person-
alized response after being trained with a few di-
alogues example from Dp. The main idea of
our work is to use Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) to learn an initial
set of parameters that can quickly learn a persona
from few dialogues sample. We refer to the pro-
posed meta-learning method for persona dialogues
as Persona-Agnostic Meta-Learning (PAML).

Persona-agnostic meta-learning (PAML) We
define the persona meta-dataset as D =
{Dp1 , . . . ,Dpz}, where z is the number of
persona. Before training, D is split into
Dtrain,Dvalid,Dtest. For each training epoch, we
uniformly sample a batch of personas Dpi from
Dtrain, then from each persona in Dpi we sample
a set of dialogues as training Dtrainpi , and another
set of dialogues as validation Dvalidpi . After t itera-
tions of training on Dtrainpi , the dialogue model fθ,
parameterized by θ, is updated to θ′pi by standard
gradient descent,

θ′pi = θ − α∇θLDtrainpi
(fθ) (3)

Algorithm 1 Persona-Agnostic Meta-Learning
Require: Dtrain

Require: α, β: step size hyperparameters
1: Randomly initialize θ
2: while not done do
3: Sample batch of persona Dpi ∼ Dtrain

4: for all Dpi do
5: (Dtrainpi ,Dvalidpi ) ∼ Dpi
6: Evaluate∇θLDtrainpi

(fθ) using Dtrainpi

7: Compute adapted parameters with
gradient descent:
θ′pi = θ − α∇θLDtrainpi

(fθ)

8: end for
9: θ ← θ−β∑Dpi∼Dtrain

∇θLDvalidpi

(
fθ′pi

)
10: end while

where α is learning of the inner optimization,
and LDtrainpi

the training loss. Specifically, cross-
entropy loss is used for training the response gen-
eration:

LDpi (fθ) = −
∑
Dpi

log p (ut|u1:t−1; θ) (4)

The meta-learning model is then trained to max-
imize the performance of the adapted model fθ′pi
to the unseen dialogues in Dvalidpi . Following Finn
et al. (2017), we define the meta-objective as:

min
θ

∑
Dpi∼Dtrain

LDvalidpi

(
fθ′pi

)
=

∑
Dpi∼Dtrain

LDvalidpi

(
fθ−α∇θLDtrain

pi
(fθ)

)
(5)

where LDvalidpi

(
fθ′pi

)
is the loss evaluated on

Dvalidpi . For optimizing Eq.(5), we apply again
stochastic gradient descent on the meta-model
parameters θ by computing the gradient of
LDvalidpi

(
fθ′pi

)
, which is:

θ ← θ − β
∑

Dpi∼Dtrain

∇θLDvalidpi

(
fθ′pi

)
(6)

where β is meta-learning rate. This process re-
quires second order optimization partial deriva-
tives, which can be computed by any automatic
differentiation library (e.g. PyTorch, Tensorflow
etc.). A summary of the training procedure is
shown in Algorithm 1.
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Automatic Human
PPL BLEU C Fluency Consistency

Human - - 0.33 3.434 0.234
Dialogue+Persona 30.42 1.00 0.07 3.053 0.011

Dialogue 36.75 0.64 -0.03 - -
Dialogue+Fine-tuning 32.96 0.90 0.00 3.103 0.038

PAML 41.64 0.74 0.20 3.185 0.197

Table 1: Results of automatic and human evaluation: PAML vs Dialogue+Persona shows the our approach can
achieve good consistency by using few dialogues instead of conditioning on the persona description, PAML vs
Dialogue+Fine-tuning shows the effectiveness of meta-learning approach in personalizing dialogue model.

3 Experiment and Results

The experiments are conducted using Persona-
chat (Zhang et al., 2018). To create the meta-sets
D , we match the dialogues by their persona de-
scription separately for train, validation and test,
by following the same persona split as in Zhang
et al. (2018). On average each persona description
has 8.3 unique dialogues. In the Appendix, we re-
port the number of dialogue distribution.

Experimental setting In our experiments, we
compared different training settings: (Dialogue) a
model trained using dialogue history, as in Eq.(2);
(PAML) a meta-trained model as in Eq.(5), where
we test each set Dpi ∈ Dtest by selecting one
dialogue and training with all the others. To elabo-
rate, suppose we are testing Ut ∈ Dpi then we first
fine-tuning using all the dialogues inDpi \Ut, and
then test on Ut. This process is repeated for all the
dialogues inDpi . (Dialogue+Fine-tuning) we use
the same testing as PAML but on a model trained
as Dialogue. We also report a trained model that
assumes persona description is available and we
refer it as (Dialogue+Persona).

Implementation details We implemented
fθ using a standard Transformer architec-
ture (Vaswani et al., 2017) with pre-trained Glove
embedding (Pennington et al., 2014) 1. For the
standard training, we used Adam (Kingma and
Ba, 2014) optimizer with a warm-up learning
rate strategy, and a batch size of 32. Instead, in
meta-training, we used SGD for the inner loop
and Adam for the outer loop with learning rate
α = 0.01 and β = 0.0003 respectively, and batch
size of 16 for both. In all the model we used beam
search with beam size 5.

1The model and the pre-processing scripts are available at
https://github.com/HLTCHKUST/PAML

3.1 Evaluation metric

The objective of the evaluation is to verify whether
PAML can produce a more consistent response
with reference to the given dialogue and persona
description (even though is not seen). To do so,
we employ both automatic and human evaluation.

Automatic We report perplexity and BLEU
score (Papineni et al., 2002) of the generate sen-
tences against the human-generated prediction.
Aside of standards evaluation metrics, we also
train a Natural Language Inference (NLI) model
using Dialog NLI (Sean et al., 2018) dataset, a re-
cently proposed corpus based on Persona dataset,
with NLI annotation between persona description
sentences and dialogues utterance. We fine-tune
a pre-trained BERT model (Devlin et al., 2018)
using the DNLI corpus and achieve a test set ac-
curacy of 88.43%, which is aligned to the best-
reported model ESIM (Chen et al., 2017) in Sean
et al. (2018) (with 88.20% accuracy). Then, we
defined a new evaluation metric for dialogue con-
sistency as follow:

NLI(u, pj) =

{ 1 if u entails pj
0 if u is independent to pj
−1 if u contradicts pj

C(u) =
m∑
j

NLI(u, pj) (7)

where u is a generated utterance and the pj is one
sentence in the persona description. Hence, having
a higher consistency C score means having a more
persona consistent dialogue response.

Human Since automatic evaluation performs
poorly in this task (Liu et al., 2016), we perform
a human evaluation using crowd-sourced workers.
We randomly selected 300 generated response ex-
amples from 10 unique personas and we asked

https://github.com/HLTCHKUST/PAML


5457

each worker to evaluate fluency (1 to 5) and con-
sistency of the generated response with respect to
the dialogue history and the respective persona de-
scription. We asked the workers to assign a score
of 1, 0 or -1 for consistent, neutral, and contradicts
respectively, the full instruction set is available in
the Appendix.

3.2 Results
Table 1 shows both automatic and human evalua-
tion results. PAML achieve consistently better re-
sults in term of dialogue consistency in both auto-
matic and human evaluation. The latter also shows
that all the experimental settings have compara-
ble fluency scores, where instead perplexity and
BLEU score are lower in PAML. This confirms
that these measures are not correlated to human
judgment (Liu et al., 2016). For completeness,
we also show generated responses examples from
PAML and baseline models in Appendix.

On the other hand, the human evaluated con-
sistency is aligned to the C score, which confirms
the meaningfulness of the defined measure. This
agrees with results of Sean et al. (2018), where
the authors showed that by re-ranking the beam
search hypothesis using the DNLI score (i.e. C
score), they achieved a substantial improvement in
dialogue consistency.

Few-shot Learning We analyze the ability of
our model to fast adapt to a certain persona in
term of shots. We define shot as the number of
dialogues used in Dtrainpi for fine-tuning a cer-
tain persona, e.g. 1-shot one dialogue, 3-shot
three dialogue and so on. Figure 2 compares
the k-shot consistency C results for k equal to 0,
1, 3, 5 and 10, both PAML and Dialogue+Fine-
tuning. PAML can achieve a high consistency
score just by using 3 dialogues, which is bet-
ter than Persona+Dialogue. On the other hand,
Dialogue+Fine-tuning cannot properly leverage
the dialogues in Dpi , which proves the effective-
ness of training with meta-learning.

4 Related Work

Meta-Learning Meta-learning (Thrun and
Pratt, 1998; Schmidhuber, 1987, 1992; Naik
and Mammone, 1992; Bengio et al., 1992) is
sub-field of machine learning with the aim of
learning the learning algorithm itself. Recently,
several meta-learning models has been proposed
for solving few-shot image classification (Ravi
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Figure 2: k-shot results for different settings. Consis-
tency of PAML grows linearly with respect to k.

and Larochelle, 2016; Vinyals et al., 2016; Finn
et al., 2017; Mishra et al., 2017; Santoro et al.,
2016), optimization (Andrychowicz et al., 2016)
and reinforcement learning (Finn et al., 2017).
Meta-learning for NLP application is less com-
mon, and it has been applied in semantic parsing
task (Huang et al., 2018), machine translation for
low resource language (Gu et al., 2018), and for
text classification (Yu et al., 2018). To the best of
our knowledge, this is the first attempt in adapting
meta-learning to personalized dialogue learning.

Personalized Dialogue Li et al. (2016) was the
first to propose a persona based dialogue mod-
els for improving response consistency. Zhang
et al. (2018) introduced Persona-chat, which was
further extended in ConvAI2 (2019). Several
works improved on the initial baselines with var-
ious methodologies (Kulikov et al., 2018; Yavuz
et al.; Hancock et al., 2019; Lucas et al., 2009;
Joshi et al., 2017; Zemlyanskiy and Sha, 2018;
Gao et al., 2018). However, all of these previ-
ous works conditioned their response on the per-
sona description, instead of using the dialogues
produced by the persona.

5 Conclusion

In this paper, we present a novel meta-learning
setting for personalizing dialogue agents with-
out conditioning the model response to the per-
sona description. This is especially useful since
obtaining such persona description requires hu-
man effort. Moreover, we show that a dialogue
agent trained with meta-learning achieves a more
consistent dialogue by both of automatic mea-
sures and human evaluation. In future works, we
plan to apply meta-learning to comment genera-
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tion (Lin et al., 2019) and task-oriented dialogues
systems (Madotto et al., 2018; Wu et al., 2019,
2017, 2018; Reddy et al., 2018).
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