@inproceedings{e-etal-2019-novel,
title = "A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling",
author = "E, Haihong and
Niu, Peiqing and
Chen, Zhongfu and
Song, Meina",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1544/",
doi = "10.18653/v1/P19-1544",
pages = "5467--5471",
abstract = "A spoken language understanding (SLU) system includes two main tasks, slot filling (SF) and intent detection (ID). The joint model for the two tasks is becoming a tendency in SLU. But the bi-directional interrelated connections between the intent and slots are not established in the existing joint models. In this paper, we propose a novel bi-directional interrelated model for joint intent detection and slot filling. We introduce an SF-ID network to establish direct connections for the two tasks to help them promote each other mutually. Besides, we design an entirely new iteration mechanism inside the SF-ID network to enhance the bi-directional interrelated connections. The experimental results show that the relative improvement in the sentence-level semantic frame accuracy of our model is 3.79{\%} and 5.42{\%} on ATIS and Snips datasets, respectively, compared to the state-of-the-art model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="e-etal-2019-novel">
<titleInfo>
<title>A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haihong</namePart>
<namePart type="family">E</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peiqing</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongfu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meina</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A spoken language understanding (SLU) system includes two main tasks, slot filling (SF) and intent detection (ID). The joint model for the two tasks is becoming a tendency in SLU. But the bi-directional interrelated connections between the intent and slots are not established in the existing joint models. In this paper, we propose a novel bi-directional interrelated model for joint intent detection and slot filling. We introduce an SF-ID network to establish direct connections for the two tasks to help them promote each other mutually. Besides, we design an entirely new iteration mechanism inside the SF-ID network to enhance the bi-directional interrelated connections. The experimental results show that the relative improvement in the sentence-level semantic frame accuracy of our model is 3.79% and 5.42% on ATIS and Snips datasets, respectively, compared to the state-of-the-art model.</abstract>
<identifier type="citekey">e-etal-2019-novel</identifier>
<identifier type="doi">10.18653/v1/P19-1544</identifier>
<location>
<url>https://aclanthology.org/P19-1544/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5467</start>
<end>5471</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
%A E, Haihong
%A Niu, Peiqing
%A Chen, Zhongfu
%A Song, Meina
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F e-etal-2019-novel
%X A spoken language understanding (SLU) system includes two main tasks, slot filling (SF) and intent detection (ID). The joint model for the two tasks is becoming a tendency in SLU. But the bi-directional interrelated connections between the intent and slots are not established in the existing joint models. In this paper, we propose a novel bi-directional interrelated model for joint intent detection and slot filling. We introduce an SF-ID network to establish direct connections for the two tasks to help them promote each other mutually. Besides, we design an entirely new iteration mechanism inside the SF-ID network to enhance the bi-directional interrelated connections. The experimental results show that the relative improvement in the sentence-level semantic frame accuracy of our model is 3.79% and 5.42% on ATIS and Snips datasets, respectively, compared to the state-of-the-art model.
%R 10.18653/v1/P19-1544
%U https://aclanthology.org/P19-1544/
%U https://doi.org/10.18653/v1/P19-1544
%P 5467-5471
Markdown (Informal)
[A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling](https://aclanthology.org/P19-1544/) (E et al., ACL 2019)
ACL