@inproceedings{shen-etal-2019-modeling,
title = "Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables",
author = "Shen, Lei and
Feng, Yang and
Zhan, Haolan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1549",
doi = "10.18653/v1/P19-1549",
pages = "5497--5502",
abstract = "Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. It{'}s practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence, and diversity compared to baseline methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2019-modeling">
<titleInfo>
<title>Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haolan</namePart>
<namePart type="family">Zhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. It’s practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence, and diversity compared to baseline methods.</abstract>
<identifier type="citekey">shen-etal-2019-modeling</identifier>
<identifier type="doi">10.18653/v1/P19-1549</identifier>
<location>
<url>https://aclanthology.org/P19-1549</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5497</start>
<end>5502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
%A Shen, Lei
%A Feng, Yang
%A Zhan, Haolan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F shen-etal-2019-modeling
%X Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. It’s practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence, and diversity compared to baseline methods.
%R 10.18653/v1/P19-1549
%U https://aclanthology.org/P19-1549
%U https://doi.org/10.18653/v1/P19-1549
%P 5497-5502
Markdown (Informal)
[Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables](https://aclanthology.org/P19-1549) (Shen et al., ACL 2019)
ACL