@inproceedings{liu-etal-2019-neural-based,
title = "Neural-based {C}hinese Idiom Recommendation for Enhancing Elegance in Essay Writing",
author = "Liu, Yuanchao and
Pang, Bo and
Liu, Bingquan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1552",
doi = "10.18653/v1/P19-1552",
pages = "5522--5526",
abstract = "Although the proper use of idioms can enhance the elegance of writing, the active use of various expressions is a challenge because remembering idioms is difficult. In this study, we address the problem of idiom recommendation by leveraging a neural machine translation framework, in which we suppose that idioms are written with one pseudo target language. Two types of real-life datasets are collected to support this study. Experimental results show that the proposed approach achieves promising performance compared with other baseline methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2019-neural-based">
<titleInfo>
<title>Neural-based Chinese Idiom Recommendation for Enhancing Elegance in Essay Writing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanchao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Pang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingquan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although the proper use of idioms can enhance the elegance of writing, the active use of various expressions is a challenge because remembering idioms is difficult. In this study, we address the problem of idiom recommendation by leveraging a neural machine translation framework, in which we suppose that idioms are written with one pseudo target language. Two types of real-life datasets are collected to support this study. Experimental results show that the proposed approach achieves promising performance compared with other baseline methods.</abstract>
<identifier type="citekey">liu-etal-2019-neural-based</identifier>
<identifier type="doi">10.18653/v1/P19-1552</identifier>
<location>
<url>https://aclanthology.org/P19-1552</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5522</start>
<end>5526</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural-based Chinese Idiom Recommendation for Enhancing Elegance in Essay Writing
%A Liu, Yuanchao
%A Pang, Bo
%A Liu, Bingquan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F liu-etal-2019-neural-based
%X Although the proper use of idioms can enhance the elegance of writing, the active use of various expressions is a challenge because remembering idioms is difficult. In this study, we address the problem of idiom recommendation by leveraging a neural machine translation framework, in which we suppose that idioms are written with one pseudo target language. Two types of real-life datasets are collected to support this study. Experimental results show that the proposed approach achieves promising performance compared with other baseline methods.
%R 10.18653/v1/P19-1552
%U https://aclanthology.org/P19-1552
%U https://doi.org/10.18653/v1/P19-1552
%P 5522-5526
Markdown (Informal)
[Neural-based Chinese Idiom Recommendation for Enhancing Elegance in Essay Writing](https://aclanthology.org/P19-1552) (Liu et al., ACL 2019)
ACL