@inproceedings{panigrahi-etal-2019-word2sense,
title = "{W}ord2{S}ense: Sparse Interpretable Word Embeddings",
author = "Panigrahi, Abhishek and
Simhadri, Harsha Vardhan and
Bhattacharyya, Chiranjib",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1570",
doi = "10.18653/v1/P19-1570",
pages = "5692--5705",
abstract = "We present an unsupervised method to generate Word2Sense word embeddings that are interpretable {---} each dimension of the embedding space corresponds to a fine-grained sense, and the non-negative value of the embedding along the j-th dimension represents the relevance of the j-th sense to the word. The underlying LDA-based generative model can be extended to refine the representation of a polysemous word in a short context, allowing us to use the embedings in contextual tasks. On computational NLP tasks, Word2Sense embeddings compare well with other word embeddings generated by unsupervised methods. Across tasks such as word similarity, entailment, sense induction, and contextual interpretation, Word2Sense is competitive with the state-of-the-art method for that task. Word2Sense embeddings are at least as sparse and fast to compute as prior art.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="panigrahi-etal-2019-word2sense">
<titleInfo>
<title>Word2Sense: Sparse Interpretable Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Panigrahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harsha</namePart>
<namePart type="given">Vardhan</namePart>
<namePart type="family">Simhadri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chiranjib</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an unsupervised method to generate Word2Sense word embeddings that are interpretable — each dimension of the embedding space corresponds to a fine-grained sense, and the non-negative value of the embedding along the j-th dimension represents the relevance of the j-th sense to the word. The underlying LDA-based generative model can be extended to refine the representation of a polysemous word in a short context, allowing us to use the embedings in contextual tasks. On computational NLP tasks, Word2Sense embeddings compare well with other word embeddings generated by unsupervised methods. Across tasks such as word similarity, entailment, sense induction, and contextual interpretation, Word2Sense is competitive with the state-of-the-art method for that task. Word2Sense embeddings are at least as sparse and fast to compute as prior art.</abstract>
<identifier type="citekey">panigrahi-etal-2019-word2sense</identifier>
<identifier type="doi">10.18653/v1/P19-1570</identifier>
<location>
<url>https://aclanthology.org/P19-1570</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5692</start>
<end>5705</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word2Sense: Sparse Interpretable Word Embeddings
%A Panigrahi, Abhishek
%A Simhadri, Harsha Vardhan
%A Bhattacharyya, Chiranjib
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F panigrahi-etal-2019-word2sense
%X We present an unsupervised method to generate Word2Sense word embeddings that are interpretable — each dimension of the embedding space corresponds to a fine-grained sense, and the non-negative value of the embedding along the j-th dimension represents the relevance of the j-th sense to the word. The underlying LDA-based generative model can be extended to refine the representation of a polysemous word in a short context, allowing us to use the embedings in contextual tasks. On computational NLP tasks, Word2Sense embeddings compare well with other word embeddings generated by unsupervised methods. Across tasks such as word similarity, entailment, sense induction, and contextual interpretation, Word2Sense is competitive with the state-of-the-art method for that task. Word2Sense embeddings are at least as sparse and fast to compute as prior art.
%R 10.18653/v1/P19-1570
%U https://aclanthology.org/P19-1570
%U https://doi.org/10.18653/v1/P19-1570
%P 5692-5705
Markdown (Informal)
[Word2Sense: Sparse Interpretable Word Embeddings](https://aclanthology.org/P19-1570) (Panigrahi et al., ACL 2019)
ACL
- Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhattacharyya. 2019. Word2Sense: Sparse Interpretable Word Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5692–5705, Florence, Italy. Association for Computational Linguistics.