@inproceedings{krasnowska-kieras-wroblewska-2019-empirical,
title = "Empirical Linguistic Study of Sentence Embeddings",
author = "Krasnowska-Kiera{\'s}, Katarzyna and
Wr{\'o}blewska, Alina",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1573",
doi = "10.18653/v1/P19-1573",
pages = "5729--5739",
abstract = "The purpose of the research is to answer the question whether linguistic information is retained in vector representations of sentences. We introduce a method of analysing the content of sentence embeddings based on universal probing tasks, along with the classification datasets for two contrasting languages. We perform a series of probing and downstream experiments with different types of sentence embeddings, followed by a thorough analysis of the experimental results. Aside from dependency parser-based embeddings, linguistic information is retained best in the recently proposed LASER sentence embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krasnowska-kieras-wroblewska-2019-empirical">
<titleInfo>
<title>Empirical Linguistic Study of Sentence Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katarzyna</namePart>
<namePart type="family">Krasnowska-Kieraś</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alina</namePart>
<namePart type="family">Wróblewska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The purpose of the research is to answer the question whether linguistic information is retained in vector representations of sentences. We introduce a method of analysing the content of sentence embeddings based on universal probing tasks, along with the classification datasets for two contrasting languages. We perform a series of probing and downstream experiments with different types of sentence embeddings, followed by a thorough analysis of the experimental results. Aside from dependency parser-based embeddings, linguistic information is retained best in the recently proposed LASER sentence embeddings.</abstract>
<identifier type="citekey">krasnowska-kieras-wroblewska-2019-empirical</identifier>
<identifier type="doi">10.18653/v1/P19-1573</identifier>
<location>
<url>https://aclanthology.org/P19-1573</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5729</start>
<end>5739</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Empirical Linguistic Study of Sentence Embeddings
%A Krasnowska-Kieraś, Katarzyna
%A Wróblewska, Alina
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F krasnowska-kieras-wroblewska-2019-empirical
%X The purpose of the research is to answer the question whether linguistic information is retained in vector representations of sentences. We introduce a method of analysing the content of sentence embeddings based on universal probing tasks, along with the classification datasets for two contrasting languages. We perform a series of probing and downstream experiments with different types of sentence embeddings, followed by a thorough analysis of the experimental results. Aside from dependency parser-based embeddings, linguistic information is retained best in the recently proposed LASER sentence embeddings.
%R 10.18653/v1/P19-1573
%U https://aclanthology.org/P19-1573
%U https://doi.org/10.18653/v1/P19-1573
%P 5729-5739
Markdown (Informal)
[Empirical Linguistic Study of Sentence Embeddings](https://aclanthology.org/P19-1573) (Krasnowska-Kieraś & Wróblewska, ACL 2019)
ACL
- Katarzyna Krasnowska-Kieraś and Alina Wróblewska. 2019. Empirical Linguistic Study of Sentence Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5729–5739, Florence, Italy. Association for Computational Linguistics.