@inproceedings{wang-etal-2019-confusionset,
title = "Confusionset-guided Pointer Networks for {C}hinese Spelling Check",
author = "Wang, Dingmin and
Tay, Yi and
Zhong, Li",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1578/",
doi = "10.18653/v1/P19-1578",
pages = "5780--5785",
abstract = "This paper proposes Confusionset-guided Pointer Networks for Chinese Spell Check (CSC) task. More concretely, our approach utilizes the off-the-shelf confusionset for guiding the character generation. To this end, our novel Seq2Seq model jointly learns to copy a correct character from an input sentence through a pointer network, or generate a character from the confusionset rather than the entire vocabulary. We conduct experiments on three human-annotated datasets, and results demonstrate that our proposed generative model outperforms all competitor models by a large margin of up to 20{\%} F1 score, achieving state-of-the-art performance on three datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-confusionset">
<titleInfo>
<title>Confusionset-guided Pointer Networks for Chinese Spelling Check</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dingmin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Tay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes Confusionset-guided Pointer Networks for Chinese Spell Check (CSC) task. More concretely, our approach utilizes the off-the-shelf confusionset for guiding the character generation. To this end, our novel Seq2Seq model jointly learns to copy a correct character from an input sentence through a pointer network, or generate a character from the confusionset rather than the entire vocabulary. We conduct experiments on three human-annotated datasets, and results demonstrate that our proposed generative model outperforms all competitor models by a large margin of up to 20% F1 score, achieving state-of-the-art performance on three datasets.</abstract>
<identifier type="citekey">wang-etal-2019-confusionset</identifier>
<identifier type="doi">10.18653/v1/P19-1578</identifier>
<location>
<url>https://aclanthology.org/P19-1578/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5780</start>
<end>5785</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Confusionset-guided Pointer Networks for Chinese Spelling Check
%A Wang, Dingmin
%A Tay, Yi
%A Zhong, Li
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F wang-etal-2019-confusionset
%X This paper proposes Confusionset-guided Pointer Networks for Chinese Spell Check (CSC) task. More concretely, our approach utilizes the off-the-shelf confusionset for guiding the character generation. To this end, our novel Seq2Seq model jointly learns to copy a correct character from an input sentence through a pointer network, or generate a character from the confusionset rather than the entire vocabulary. We conduct experiments on three human-annotated datasets, and results demonstrate that our proposed generative model outperforms all competitor models by a large margin of up to 20% F1 score, achieving state-of-the-art performance on three datasets.
%R 10.18653/v1/P19-1578
%U https://aclanthology.org/P19-1578/
%U https://doi.org/10.18653/v1/P19-1578
%P 5780-5785
Markdown (Informal)
[Confusionset-guided Pointer Networks for Chinese Spelling Check](https://aclanthology.org/P19-1578/) (Wang et al., ACL 2019)
ACL